IDNStudy.com, kung saan ang iyong mga tanong ay natutugunan ng eksaktong sagot. Makakuha ng impormasyon mula sa aming mga eksperto, na nagbibigay ng maaasahang sagot sa lahat ng iyong mga tanong.

the product of two numbers is 8 and their difference is 6. find the numbers.

Sagot :

[tex]the \ first\ number : \ x \\the \ second \ number : \ y \\\\ \begin{cases}x\cdot y =8 \\ x-y= 6 \end{cases} \\\\ \begin{cases}x\cdot y =8 \\ x = 6 + y \end{cases} \\\\ \begin{cases}x\cdot y(6+y)=8 \\ x = 6 + y \end{cases}[/tex]

[tex]y(6+y) =8 \\6y+y^2=8\\ y^2+6y-8=0\\a=1,\ \ b=6, \ \ c=-8\\\\y_{1}=\frac{-b-\sqrt{b^{2}-4ac}}{2a} =\frac{-6-\sqrt{6^2-4\cdot 1\cdot (-8)}}{2}= \frac{-6-\sqrt{36+32}}{2}=\frac{-6-\sqrt{68}}{2}=\\\\=\frac{-6-\sqrt{4\cdot 17}}{2}=\frac{-6-2\sqrt{17}}{2}=\frac{-2(3+\sqrt{17})}{2}=-(3+\sqrt{17})[/tex]

[tex]y_{2}=\frac{-b+\sqrt{b^{2}-4ac}}{2a} =\frac{-6+\sqrt{6^2-4\cdot 1\cdot (-8)}}{2}=\frac{2(-3+\sqrt{17})}{2}= \sqrt{17}-3 \\\\\begin{cases}x\cdot y =8 \\ y=-(3+\sqrt{17} )\end{cases} \ \ \ or \ \ \ \begin{cases}x\cdot y =8 \\ y= \sqrt{17}-3 \end{cases} \\\\ \begin{cases}x\cdot -( 3+\sqrt{17}) =8 \\ y=-(3+\sqrt{17}) \end{cases} \ \ \ or \ \ \ \begin{cases}x\cdot ( \sqrt{17}-3) =8 \\ y=\sqrt{17}-3 \end{cases}[/tex]

[tex]\begin{cases}x =\frac{8}{-(3+\sqrt{17})} \\ y=-3-\sqrt{17} \end{cases} \ \ \ or \ \ \ \begin{cases}x= \frac{8}{\sqrt{17}-3 } \\ y=\sqrt{17}-3 \end{cases}\\\\ \begin{cases}x =\frac{8}{-(3+\sqrt{17})} \\ y=-(3+\sqrt{17}) \end{cases} \ \ \ or \ \ \ \begin{cases}x= \frac{8}{\sqrt{17}-3 } \\ y=\sqrt{17}-3 \end{cases}[/tex]

[tex]\begin{cases}x =\frac{8}{-(3+\sqrt{17})}*\frac{3-\sqrt{17}}{3-\sqrt{17}} \\ y=-(3+\sqrt{17}) \end{cases} \ \ \ or \ \ \ \begin{cases}x= \frac{8}{\sqrt{17}-3 }*\frac{\sqrt{17}+3}{\sqrt{17}+3} \\ y=\sqrt{17}-3 \end{cases}[/tex]

[tex]\begin{cases}x = \frac{8(3-\sqrt{17})}{-(9-17)} \\ y=-(3+\sqrt{17}) \end{cases} \ \ \ or \ \ \ \begin{cases}x= \frac{8(\sqrt{17}+3)}{17-9} \\ y=\sqrt{17}- 3\end{cases}\\\\\begin{cases}x = \frac{8(3-\sqrt{17}) }{8 } \\ y=-(3+\sqrt{17}) \end{cases} \ \ \ or \ \ \ \begin{cases}x= \frac{8(\sqrt{17}+3) }{8} \\ y=\sqrt{17}- 3\end{cases}\\\\\begin{cases}x = \frac{8(3-\sqrt{17}) }{8 } \\ y=-(3+\sqrt{17}) \end{cases} \ \ \ or \ \ \ \begin{cases}x= \frac{8(\sqrt{17}+3)}{8} \\ y=\sqrt{17}- 3\end{cases}[/tex]

[tex]\begin{cases}x = 3-\sqrt{17} \\ y=-(3+\sqrt{17}) \end{cases} \ \ \ or \ \ \ \begin{cases}x= \sqrt{17}+3 \\ y=\sqrt{17}- 3\end{cases}[/tex]