Yamidn
Answered

Tuklasin ang maliwanag na mga sagot sa iyong mga tanong sa IDNStudy.com. Sumali sa aming platform ng tanong at sagot upang makatanggap ng mabilis at eksaktong tugon mula sa mga propesyonal sa iba't ibang larangan.

prove that sinx + tanx ÷ 1+secx  =   sinx 

Sagot :

Please zoom in your screen if you're having trouble reading small texts. The following equations will look small.

The equation is this:
[tex] \frac{sinx+ tanx }{1+secx } =sinx[/tex]

Recall these identities:
[tex]tanx= \frac{sinx}{cosx} [/tex]
[tex] secx= \frac{1}{cosx} [/tex]

Doing the necessary substitution, we get:
[tex] \frac{sinx+ \frac{sinx}{cosx} }{1+ \frac{1}{cosx} } =sinx[/tex]

Combining, we will have:
[tex]( \frac{sinxcosx+sinx}{cosx}) /( \frac{cosx+1}{cosx})=sinx [/tex]

When we divide, we multiply the numerator by the reciprocal of the denominator, we get:
[tex] \frac{sinxcosx+sinx}{cosx}* \frac{cosx}{cosx+1}=sinx [/tex]

We cancel cosx, then we get:
[tex] \frac{sinxcosx+sinx}{cosx+1}=sinx[/tex]

Factor sinx from the numerator,
[tex] \frac{sinx(cosx+1)}{cosx+1}=sinx[/tex]

Cancel cosx+1,
[tex]sinx=sinx[/tex]

Yay.

Hope that helps.