Makakuha ng eksaktong at maaasahang sagot sa lahat ng iyong katanungan sa IDNStudy.com. Magtanong ng anumang bagay at makatanggap ng mga maalam na sagot mula sa aming komunidad ng mga propesyonal.
Sagot :
[tex]\begin{cases}2x+5y=\frac{4}{5} \\ 6x-5y=\frac{5}{6} \end{cases}\\\\\begin{cases} 5y=-2x+\frac{4}{5} \ \ / *\frac{1}{5} \\ 6x-5y=\frac{5}{6} \end{cases}\\\\\begin{cases} y=-\frac{2}{5}x+4 \\ 6x-5y=\frac{5}{6} \end{cases}[/tex]
[tex]substitution : \\\\ 6x-5 *(-\frac{2}{5}x+\frac{4}{25})=\frac{5}{6}\\\\6x+2x- \frac{4}{5}=\frac{5}{6} \\\\8x=\frac{5}{6} +\frac{4}{5}\\\\8x=\frac{25}{30}+\frac{24}{30}[/tex]
[tex]8x=\frac{49}{30} \ \ /*\frac{1}{8}\\\\x=\frac{49}{240}\\\\\\2*\frac{49}{240}+5y=\frac{4}{5}\\\\\frac{49}{120}+5y=\frac{4}{5}[/tex]
[tex]5y=\frac{4}{5}-\frac{49}{120} \\\\5y=\frac{96}{120}-\frac{49}{120} \\\\5y=\frac{47}{120}\ \ /*\frac{1}{5}\\\\y=\frac{47}{600} \\\\Answer : \ \begin{cases} x= \frac{49}{240}\\ y=\frac{47}{600} \end{cases}[/tex]
[tex]substitution : \\\\ 6x-5 *(-\frac{2}{5}x+\frac{4}{25})=\frac{5}{6}\\\\6x+2x- \frac{4}{5}=\frac{5}{6} \\\\8x=\frac{5}{6} +\frac{4}{5}\\\\8x=\frac{25}{30}+\frac{24}{30}[/tex]
[tex]8x=\frac{49}{30} \ \ /*\frac{1}{8}\\\\x=\frac{49}{240}\\\\\\2*\frac{49}{240}+5y=\frac{4}{5}\\\\\frac{49}{120}+5y=\frac{4}{5}[/tex]
[tex]5y=\frac{4}{5}-\frac{49}{120} \\\\5y=\frac{96}{120}-\frac{49}{120} \\\\5y=\frac{47}{120}\ \ /*\frac{1}{5}\\\\y=\frac{47}{600} \\\\Answer : \ \begin{cases} x= \frac{49}{240}\\ y=\frac{47}{600} \end{cases}[/tex]
2x + 5y = 4/5 ---- equation 1
6x - 5y =5/6 ----equation 2
since you are to use substitution method then first thing to do is to have one equation be modified such that one variable could have a value in terms of the other..
Let's have equation 1
2x + 5y = 4/5
2x = 4/5 - 5y
[tex]x = ( \frac{4}{5} - 5y)( \frac{1}{2}) [/tex]
[tex]x = (\frac{4}{5} )( \frac{1}{2} ) - \frac{5y}{2} [/tex]
[tex]x = \frac{2}{5} - \frac{5y}{2} [/tex]
substituting this to equation 2 you'll have:
6x - 5y = 5/6
[tex]6( \frac{2}{5} - \frac{5y}{2}) - 5y = \frac{5}{6} [/tex]
[tex]6( \frac{2}{5}) - \frac{6(5y)}{2} - 5y = \frac{5}{6} [/tex]
[tex] \frac{12}{5} - 15y - 5y = \frac{5}{6} [/tex]
[tex] \frac{12}{5} - \frac{5}{6} = 15y + 5y [/tex]
[tex]20y = \frac{12}{5} - \frac{5}{6} [/tex]
[tex]20y = \frac{12(6)-5(5)}{30} [/tex]
[tex]20y = \frac{71-25}{30} [/tex]
[tex]20y = \frac{47}{30} [/tex]
[tex]y = \frac{47}{30(20)} [/tex]
[tex]y = \frac{47}{600} [/tex]
substituting the value for y to equation 1
2x + 5y = 4/5
2x + 5(47/600) = 4/5
[tex]2x = \frac{4}{5} - \frac{5(47)}{600} [/tex]
[tex]2x = \frac{4}{5} - \frac{47}{120} [/tex]
[tex]2x = \frac{49}{120} [/tex]
[tex]x = \frac{49}{240} [/tex]
6x - 5y =5/6 ----equation 2
since you are to use substitution method then first thing to do is to have one equation be modified such that one variable could have a value in terms of the other..
Let's have equation 1
2x + 5y = 4/5
2x = 4/5 - 5y
[tex]x = ( \frac{4}{5} - 5y)( \frac{1}{2}) [/tex]
[tex]x = (\frac{4}{5} )( \frac{1}{2} ) - \frac{5y}{2} [/tex]
[tex]x = \frac{2}{5} - \frac{5y}{2} [/tex]
substituting this to equation 2 you'll have:
6x - 5y = 5/6
[tex]6( \frac{2}{5} - \frac{5y}{2}) - 5y = \frac{5}{6} [/tex]
[tex]6( \frac{2}{5}) - \frac{6(5y)}{2} - 5y = \frac{5}{6} [/tex]
[tex] \frac{12}{5} - 15y - 5y = \frac{5}{6} [/tex]
[tex] \frac{12}{5} - \frac{5}{6} = 15y + 5y [/tex]
[tex]20y = \frac{12}{5} - \frac{5}{6} [/tex]
[tex]20y = \frac{12(6)-5(5)}{30} [/tex]
[tex]20y = \frac{71-25}{30} [/tex]
[tex]20y = \frac{47}{30} [/tex]
[tex]y = \frac{47}{30(20)} [/tex]
[tex]y = \frac{47}{600} [/tex]
substituting the value for y to equation 1
2x + 5y = 4/5
2x + 5(47/600) = 4/5
[tex]2x = \frac{4}{5} - \frac{5(47)}{600} [/tex]
[tex]2x = \frac{4}{5} - \frac{47}{120} [/tex]
[tex]2x = \frac{49}{120} [/tex]
[tex]x = \frac{49}{240} [/tex]
Maraming salamat sa iyong aktibong pakikilahok. Patuloy na magbahagi ng impormasyon at kasagutan. Sama-sama tayong lumikha ng isang masiglang komunidad ng pagkatuto. Ang IDNStudy.com ay laging nandito upang tumulong sa iyo. Bumalik ka palagi para sa mga sagot sa iyong mga katanungan.