Makakuha ng eksaktong at maaasahang sagot sa lahat ng iyong katanungan sa IDNStudy.com. Magtanong ng anumang bagay at makatanggap ng mga maalam na sagot mula sa aming komunidad ng mga propesyonal.

2x + 5y = 4/5

6x - 5y = 5/6

solve each system of linear equation by the substitute method

Sagot :

[tex]\begin{cases}2x+5y=\frac{4}{5} \\ 6x-5y=\frac{5}{6} \end{cases}\\\\\begin{cases} 5y=-2x+\frac{4}{5} \ \ / *\frac{1}{5} \\ 6x-5y=\frac{5}{6} \end{cases}\\\\\begin{cases} y=-\frac{2}{5}x+4 \\ 6x-5y=\frac{5}{6} \end{cases}[/tex]

[tex]substitution : \\\\ 6x-5 *(-\frac{2}{5}x+\frac{4}{25})=\frac{5}{6}\\\\6x+2x- \frac{4}{5}=\frac{5}{6} \\\\8x=\frac{5}{6} +\frac{4}{5}\\\\8x=\frac{25}{30}+\frac{24}{30}[/tex]

[tex]8x=\frac{49}{30} \ \ /*\frac{1}{8}\\\\x=\frac{49}{240}\\\\\\2*\frac{49}{240}+5y=\frac{4}{5}\\\\\frac{49}{120}+5y=\frac{4}{5}[/tex]

 [tex]5y=\frac{4}{5}-\frac{49}{120} \\\\5y=\frac{96}{120}-\frac{49}{120} \\\\5y=\frac{47}{120}\ \ /*\frac{1}{5}\\\\y=\frac{47}{600} \\\\Answer : \ \begin{cases} x= \frac{49}{240}\\ y=\frac{47}{600} \end{cases}[/tex]


2x + 5y = 4/5 ---- equation 1
6x - 5y =5/6  ----equation 2
since you are to use substitution method then first thing to do is to have one equation be modified such that one variable could have a value in terms of the other..
Let's have equation 1
2x + 5y = 4/5
2x = 4/5 - 5y
[tex]x = ( \frac{4}{5} - 5y)( \frac{1}{2}) [/tex]
[tex]x = (\frac{4}{5} )( \frac{1}{2} ) - \frac{5y}{2} [/tex]
[tex]x = \frac{2}{5} - \frac{5y}{2} [/tex]
substituting this to equation 2 you'll have:
6x - 5y = 5/6
[tex]6( \frac{2}{5} - \frac{5y}{2}) - 5y = \frac{5}{6} [/tex]
[tex]6( \frac{2}{5}) - \frac{6(5y)}{2} - 5y = \frac{5}{6} [/tex]
[tex] \frac{12}{5} - 15y - 5y = \frac{5}{6} [/tex]
[tex] \frac{12}{5} - \frac{5}{6} = 15y + 5y [/tex]
[tex]20y = \frac{12}{5} - \frac{5}{6} [/tex]
[tex]20y = \frac{12(6)-5(5)}{30} [/tex]
[tex]20y = \frac{71-25}{30} [/tex]
[tex]20y = \frac{47}{30} [/tex]
[tex]y = \frac{47}{30(20)} [/tex]
[tex]y = \frac{47}{600} [/tex]
substituting the value for y to equation 1
2x + 5y = 4/5
2x + 5(47/600) = 4/5
[tex]2x = \frac{4}{5} - \frac{5(47)}{600} [/tex]
[tex]2x = \frac{4}{5} - \frac{47}{120} [/tex]
[tex]2x = \frac{49}{120} [/tex]
[tex]x = \frac{49}{240} [/tex]