Answered

Sumali sa IDNStudy.com at makuha ang mabilis at kaugnay na mga sagot. Makakuha ng impormasyon mula sa aming mga eksperto, na nagbibigay ng maaasahang sagot sa lahat ng iyong mga tanong.

find three consecutive integers such that the sum of the squares of the second and the third numbers exceeds the square of the first number by 21

Sagot :

let x be the first number
    x+1 be the 2nd number
    x+2 be the 3rd number
as stated in the problem, we can form the equation:
(x+1)² + (x+2)² = x² + 21
expanding the terms we'll have
(x² + 2x + 1) + (x² + 4x +4) = x² + 21
combine the like terms and transposing x² + 21 to the left:
x²+x²-x² + 2x + 4x +1 + 4 - 21 = 0
x² + 6x -16 = 0
factor:
(x + 8) (x - 2) = 0
getting the roots:
x + 8 = 0
x = - 8
x - 2 = 0
x = 2
taking the first value of x which is -8,
the consecutive negative integers would be:
x = -8
x + 1 = -7
x + 2= -6
(-8,-7,-6)
considering the second value of x which is 2
the consecutive positive integers would be:
x= 2
x + 1 = 3
x + 2 = 4
(2,3,4)
(x, x+1, x+2)
[(x+1)^2+(x+2)^2)]-x^2=21
[(x^2+2x+1)+(x^2+4x+4)]-x^2=21
(2x^2+6x+5)-x^2=21
x^2+6x+5=21
x^2+6x-16=0
(x+8)(x-2)=0
x=-8; x=2
 the numbers are -8, -7, -6 or 2, 3, 4