IDNStudy.com, ang iyong platform ng sanggunian para sa malinaw na mga sagot. Sumali sa aming platform ng tanong at sagot upang makatanggap ng mabilis at eksaktong tugon mula sa mga propesyonal sa iba't ibang larangan.

Find R and P if
[tex] \frac{R}{3x-2}+ \frac{P}{x+3}= \frac{19-x}{3x^2+7x-6} [/tex]

Sagot :

[tex]\frac{R}{3x-2}+ \frac{P}{x+3}= \frac{19-x}{3x^2+7x-6} \\\\ \frac{R(x+3)+P(3x-2)}{(3x-2)(x+3)} = \frac{19-x}{ 3x^2+9x-2x-6 }\\\\\frac{R(x+3)+P(3x-2)}{ (3x-2) (x +3) } = \frac{19-x}{3x (x +3)-2(x+3) }\\\\\frac{R(x+3)+P(3x-2)}{ (3x-2) (x +3) } = \frac{19-x}{ (3x-2) (x +3) }[/tex]

[tex]R(x+3)+P(3x-2) =19-x\\\\R(x+3) =19-x-P(3x-2)\ \ :(x+3)\\\\R =\frac{19-x-P(3x-2)}{x+3}=\frac{19-x- 3Px+2P}{x+3}=\frac{ -x(1+ 3P+19 )+2P}{x+3} \\\\P(3x-2) =19-x-R(x+3)\ \ /:(3x-2)\\\\P =\frac{19-x-R(x+3)}{3x-2}=\frac{19-x-Rx-3R}{3x-2}= \frac{ -x(1+ R )-3R+19}{3x-2}[/tex]


[tex](3x-2)(x+3) \neq 0 \\\\3x-2 \neq 0 \ \ \ or \ \ \ x+3\neq 0\\\\3x \neq 2\ \ /:3 \ \ \ or \ \ \ x \neq -3\\\\x\neq \frac{2}{3}\ \ \ or \ \ \ x\neq -3 \\ \\ D=R\setminus \left \{ -3,\frac{2}{3} \right \}[/tex]