IDNStudy.com, kung saan ang iyong mga tanong ay natutugunan ng mga eksperto. Makakuha ng mga sagot sa iyong mga tanong mula sa aming mga eksperto, handang magbigay ng mabilis at tiyak na solusyon.
Sagot :
[tex]y=2(x+ \frac{5}{4})^2-\frac{49}{8}[/tex]
Vertex-form equation for a vertical parabola:
[tex]y = a(x - h)^2 + k \\vertex \ is \ (h, k) \\\\The \ vertex \ is : \ (-\frac{5}{4}, -\frac{49}{8} )[/tex]
a > 0, \ so \ the \ parabola \ opens \ upwards.
The minimum value of y is at the vertex, where [tex]y = -\frac{49}{8}[/tex]
Since the parabola opens upwards and the vertex is \ [tex](-\frac{5}{4} ,-\frac{49}{8}): \\it \ is \ decreasing \ when \ x < -\frac{5}{4} \\it \ is \ increasing \ when \ x > -\frac{5}{4}[/tex]
[tex]the \ roots \ of \ the \ parabola :\\ \\2(x+ \frac{5}{4})^2-\frac{49}{8}=0\\\\2(x^2+\frac{5}{2}x+\frac{25}{16})-\frac{49}{8}=0\\\\2 x^2+5x+\frac{25}{8} -\frac{49}{8}=0\\\\2 x^2+5x-\frac{24}{8} =0[/tex]
[tex]2 x^2+5x-3 =0 \\a=2, \ \ b=5 , \ \ c=-3 \\\\x_{1}=\frac{-b-\sqrt{b^2-4ac}}{2a}=\frac{-5-\sqrt{5^2-4 \cdot2 \cdot (-3) }}{2 \cdot 2}=\frac{-5-\sqrt{25+24 }}{4}=\\\\=\frac{-5-\sqrt{49 }}{4}=\frac{-5-7}{4}=\frac{-12}{4}=-3\\\\x_{2}=\frac{-b+\sqrt{b^2-4ac}}{2a}=\frac{-5+7}{4}= \frac{-2}{4}=-\frac{1}{2}[/tex]
Vertex-form equation for a vertical parabola:
[tex]y = a(x - h)^2 + k \\vertex \ is \ (h, k) \\\\The \ vertex \ is : \ (-\frac{5}{4}, -\frac{49}{8} )[/tex]
a > 0, \ so \ the \ parabola \ opens \ upwards.
The minimum value of y is at the vertex, where [tex]y = -\frac{49}{8}[/tex]
Since the parabola opens upwards and the vertex is \ [tex](-\frac{5}{4} ,-\frac{49}{8}): \\it \ is \ decreasing \ when \ x < -\frac{5}{4} \\it \ is \ increasing \ when \ x > -\frac{5}{4}[/tex]
[tex]the \ roots \ of \ the \ parabola :\\ \\2(x+ \frac{5}{4})^2-\frac{49}{8}=0\\\\2(x^2+\frac{5}{2}x+\frac{25}{16})-\frac{49}{8}=0\\\\2 x^2+5x+\frac{25}{8} -\frac{49}{8}=0\\\\2 x^2+5x-\frac{24}{8} =0[/tex]
[tex]2 x^2+5x-3 =0 \\a=2, \ \ b=5 , \ \ c=-3 \\\\x_{1}=\frac{-b-\sqrt{b^2-4ac}}{2a}=\frac{-5-\sqrt{5^2-4 \cdot2 \cdot (-3) }}{2 \cdot 2}=\frac{-5-\sqrt{25+24 }}{4}=\\\\=\frac{-5-\sqrt{49 }}{4}=\frac{-5-7}{4}=\frac{-12}{4}=-3\\\\x_{2}=\frac{-b+\sqrt{b^2-4ac}}{2a}=\frac{-5+7}{4}= \frac{-2}{4}=-\frac{1}{2}[/tex]
Ang iyong kontribusyon ay napakahalaga sa amin. Huwag kalimutang bumalik upang magtanong at matuto ng mga bagong bagay. Sama-sama tayong lumikha ng isang mas matibay na samahan. Bawat tanong ay may sagot sa IDNStudy.com. Salamat sa pagpili sa amin at sa muling pagkikita.