IDNStudy.com, ang iyong gabay para sa maaasahan at eksaktong mga sagot. Hanapin ang mga solusyong kailangan mo nang mabilis at tiyak sa tulong ng aming mga bihasang miyembro.

find the three consecutive multiple of five so that the square of the third, decreased by five times the second number, is the same as twenty five more than the twice the product of the first two numbers

Sagot :

Let the second number be x

[tex] (x+5)^{2}-5x=2[(x-5)x]+25 [/tex]
[tex] x^{2} +10x+25-5x=2[ x^{2} -5x]+25[/tex]
[tex] x^{2} +5x+25=2 x^{2} -10x+25[/tex]
[tex] x^{2} +5x=2 x^{2} -10x[/tex]
[tex]5x= x^{2} -10x[/tex]
[tex]15x= x^{2} [/tex]
[tex]15=x[/tex]

Therefore the three multiples of 5 are 10, 15 and 20