Answered

Makakuha ng detalyadong mga sagot sa lahat ng iyong katanungan sa IDNStudy.com. Alamin ang mga detalyadong sagot mula sa mga bihasang miyembro ng aming komunidad na sumasaklaw sa iba't ibang paksa para sa lahat ng iyong pangangailangan.

Find the equation of the line thru the point (2, -5) and perpendicular to the line whose equation is x - 5y = - 8

Sagot :

[tex](2, -5) , \ \ \ x - 5y = - 8 \\ \\ x - 5y = - 8 \ subtract \ (-x )\ from \ each \ side \\ \\ -5y = - x -8 \ divide \ each \ term \ by \ (-5) \\ \\ y = \frac{1} {5}x + \frac{ 8}{5}\\ \\ The \ slope \ is : \ m _{1} = \frac{1}{5}[/tex]

[tex]If \ m_{1} \ and \ m _{2} \ are \ the \ gradients \ of \ two \ perpendicular \\ \\ lines \ we \ have : \\ m _{1}*m _{2} = -1 \\\\\frac{1}{5}\cdot m_{2}=-1 \ \ / \cdot 5\\\\m_{2}=-5[/tex]

[tex]Now \ your \ equation \ of \ line \ passing \ through \ (2,-5) would \ be: \\ \\ y=m_{2}\cdot x+b \\ \\-5=(-5) \cdot 2 + b \\ \\ -5= -10+b\\ \\ b=-5+10=5\\\\ y = -5x +5[/tex]