Answered

Makakuha ng mga sagot sa iyong mga pinakamahahalagang tanong sa IDNStudy.com. Makakuha ng mabilis at eksaktong sagot sa iyong mga tanong mula sa aming mga eksperto na laging handang tumulong.

If you are to solve each of the following quadratic equations, which method would you use and why? Explain your answer.
a. 9x2 = 225 d. 2x2 + x – 28 = 0

b. 4x2 – 121 = 0 e. 4x2 + 16x + 15 = 0

c. x2 + 11x + 30 = 0 f. 4x2 + 4x – 15 = 0

Sagot :

a. Factoring - since the it can be factored to (3x - 5)(3x + 5) by Binomial Theorem. b. Factoring - binomial theorem is also applied (2x - 11)(2x + 11) c. Quadratic Equation - can not be factored easily d. Factoring - can be factored (2x - 7)(x + 4) e. Factoring - can be factored (2x + 3)(2x + 5) f. Factoring - can be factored (2x - 3)(2x + 5)
[tex]a.\\ 9x^2 = 225 \\9x^2-225=0\\(3x)^2-15^2=0\\(3x-15)(3x+15)=0 \\3x-15=0\ \ or\ \ 3x+15 =0 \\3x=15 \ \ or \ \ 3x=-15 \\x= 3 \ \ or\ \ x=-3\\ \\Factoring : \ a^2-b^2=(a-b)(a+b)[/tex]

[tex]b.\\\\ 4x^2 - 121 = 0\\(2x)^2-11^2 =0\\(2x-11)(2x+11)=0 \\\\2x-11=0 \ \ or \ \ 2x+11=0 \\2x=11 \ \ or \ \ 2x=-11\\ x=\frac{11}{2} \ \ or \ \ x=-\frac{11}{2} \\ x=5.5 \ \ or \ \ x=-5.5 \\Factoring[/tex]

[tex]c.\\\\ x^2 + 11x + 30 = 0 \\a=1, \ \ b=11, \ \c=30 \\\\ \Delta =b^2-4ac = 11^2 -4\cdot1\cdot 30 = 121-120=1 \\ \\x_{1}=\frac{-b-\sqrt{\Delta} }{2a}=\frac{-11-\sqrt{1 }}{2 }=\frac{ -11-1}{2}=\frac{-12}{2}=-6 \\\\ x_{2}=\frac{-b+\sqrt{\Delta} }{2a}=\frac{-11+\sqrt{1 }}{2 }=\frac{ -11+1}{2}=\frac{-10}{2}=-5\\\\ Quadratic \ Equation - can \ not \ be \ easily \ decomposed \ into \ factors[/tex]
 
[tex]d.\\\\ 2x^2 + x - 28 = 0 \\a=2, \ \ b=1 , \ \c=-28 \\\\ \Delta =b^2-4ac = 1^2 -4\cdot2\cdot (-28) = 1+224=225 \\ \\x_{1}=\frac{-b-\sqrt{\Delta} }{2a}=\frac{-1-\sqrt{225}}{2\cdot 2 }=\frac{ -1-15}{4}=\frac{-16}{4}=-4 \\\\ x_{2}=\frac{-b+\sqrt{\Delta} }{2a} =\frac{-1+\sqrt{225}}{2\cdot 2 }=\frac{ -1+15}{4}=\frac{ 14}{4}= 3.5\\\\ Quadratic \ Equation[/tex]

[tex]e. \\\\4x^2 + 16x + 15 = 0 \\a=4, \ \ b=16 , \ \c=15 \\\\ \Delta =b^2-4ac = 16^2 -4\cdot4\cdot 15 = 256-240=16 \\ \\x_{1}=\frac{-b-\sqrt{\Delta} }{2a}=\frac{-16-\sqrt{16}}{2\cdot 4 }=\frac{ -16-4}{8}=\frac{-20}{8}=- \frac{5}{2}=-2.5 \\\\ x_{2}=\frac{-b+\sqrt{\Delta} }{2a} =\frac{-16+\sqrt{16}}{2\cdot 4 }=\frac{ -16+4}{8}=\frac{-12}{8}=- \frac{3}{2}=-1.5\\\\ Quadratic \ Equation[/tex]

[tex]e.\\\\ 4x^2 + 4x - 15 = 0 \\a=4, \ \ b=4, \ \c=-15 \\\\ \Delta =b^2-4ac = 4^2 -4\cdot4\cdot (- 15 )= 16+240=256 \\ \\x_{1}=\frac{-b-\sqrt{\Delta} }{2a}=\frac{-4-\sqrt{256}}{2\cdot 4 }=\frac{ -4-16 }{8}=\frac{-20}{8}=- \frac{5}{2}=-2.5 \\\\ x_{2}=\frac{-b+\sqrt{\Delta} }{2a} =\frac{-4+\sqrt{256}}{2\cdot 4 }=\frac{ -4+16}{8}=\frac{ 12}{8}= \frac{3}{2}= 1.5\\\\ Quadratic \ Equation[/tex]