IDNStudy.com, ang iyong destinasyon para sa maaasahan at pangkomunidad na mga sagot. Ang aming platform ay nagbibigay ng mga maaasahang sagot upang matulungan kang gumawa ng matalinong desisyon nang mabilis at madali.
Sagot :
Answer:
⚠️ Don't copy like these < / p> < p > p >
[tex]1. \: \(1 \frac{3}{2} + 1 \frac{3}{5} [/tex]
[tex]1 \frac{3}{2} = 1 + \frac{3}{2} = \frac{5}{2}\\
1 \frac{3}{5} = 1 + \frac{3}{5} = \frac{8}{5}\\
\text{Convert to a common denominator:}\\
\frac{5}{2} = \frac{25}{10}\\
\frac{8}{5} = \frac{16}{10}\\
\frac{25}{10} + \frac{16}{10} = \frac{41}{10} = 4 \frac{1}{10} [/tex]
[tex]2. \: \(\frac{2}{11} + 2 \frac{1}{2} [/tex]
[tex]2 \frac{1}{2} = 2 + \frac{1}{2} = \frac{5}{2}\\
\text{Convert to a common denominator:}\\
\frac{2}{11} + \frac{5}{2} = \frac{2 \cdot 2 + 5 \cdot 11}{2 \cdot 11} = \frac{4 + 55}{22} = \frac{59}{22} = 2 \frac{15}{22} [/tex]
[tex]3. \: \(1 \frac{1}{3} + \frac{1}{5}[/tex]
[tex]1 \frac{1}{3} = 1 + \frac{1}{3} = \frac{4}{3}\\
\text{Convert to a common denominator:}\\
\frac{4}{3} + \frac{1}{5} = \frac{4 \cdot 5 + 1 \cdot 3}{3 \cdot 5} = \frac{20 + 3}{15} = \frac{23}{15} = 1 \frac{8}{15}[/tex]
[tex]4. \: \(2 \frac{3}{4} + \frac{2}{2}
[/tex]
[tex]2 \frac{3}{4} = 2 + \frac{3}{4} = \frac{11}{4}\\
\frac{2}{2} = 1\\
\frac{11}{4} + 1 = \frac{11}{4} + \frac{4}{4} = \frac{15}{4} = 3 \frac{3}{4}[/tex]
[tex]5. \: \(1 \frac{1}{2} + \frac{2}{3}[/tex]
[tex]1 \frac{1}{2} = 1 + \frac{1}{2} = \frac{3}{2}\\
\text{Convert to a common denominator:}\\
\frac{3}{2} + \frac{2}{3} = \frac{3 \cdot 3 + 2 \cdot 2}{2 \cdot 3} = \frac{9 + 4}{6} = \frac{13}{6} = 2 \frac{1}{6}[/tex]
[tex]6. \: \(3 \frac{1}{2} + \frac{4}{5}\)[/tex]
[tex]3 \frac{1}{2} = 3 + \frac{1}{2} = \frac{7}{2}\\
\text{Convert to a common denominator:}\\
\frac{7}{2} + \frac{4}{5} = \frac{7 \cdot 5 + 4 \cdot 2}{2 \cdot 5} = \frac{35 + 8}{10} = \frac{43}{10} = 4 \frac{3}{10}[/tex]
[tex]7. \: \(4 \frac{1}{4} + 2 \frac{1}{6}\)[/tex]
[tex]4 \frac{1}{4} = 4 + \frac{1}{4} = \frac{17}{4}\\
2 \frac{1}{6} = 2 + \frac{1}{6} = \frac{13}{6}\\
\text{Convert to a common denominator:}\\
\frac{17}{4} + \frac{13}{6} = \frac{17 \cdot 3 + 13 \cdot 2}{4 \cdot 6} = \frac{51 + 26}{24} = \frac{77}{24} = 3 \frac{5}{24}
[/tex]
[tex]8. \: \( \frac{5}{6} + 3 \frac{3}{7} \)[/tex]
[tex]3 \frac{3}{7} = 3 + \frac{3}{7} = \frac{24}{7} \\
\text{Convert to a common denominator:} \\
\frac{5}{6} + \frac{24}{7} = \frac{5 \cdot 7 + 24 \cdot 6}{6 \cdot 7} = \frac{35 + 144}{42} = \frac{179}{42} = 4 \frac{11}{42}[/tex]
[tex]9. \: \( 5 \frac{2}{5} + 2 \frac{1}{4} \)[/tex]
[tex]5 \frac{2}{5} = 5 + \frac{2}{5} = \frac{27}{5} \\
2 \frac{1}{4} = 2 + \frac{1}{4} = \frac{9}{4} \\
\text{Convert to a common denominator:} \\
\frac{27}{5} + \frac{9}{4} = \frac{27 \cdot 4 + 9 \cdot 5}{5 \cdot 4} = \frac{108 + 45}{20} = \frac{153}{20} = 7 \frac{13}{20}[/tex]
[tex]10. \: \( 20 \times 3 \frac{1}{9} + \frac{2}{3} \)[/tex]
[tex]3 \frac{1}{9} = 3 + \frac{1}{9} = \frac{28}{9} \\
\text{Multiply by 20:} \\
20 \times \frac{28}{9} = \frac{560}{9} \\
\text{Then add } \frac{2}{3}: \\
\frac{560}{9} + \frac{2}{3} = \frac{560 \cdot 3 + 2 \cdot 9}{9 \cdot 3} = \frac{1680 + 18}{27} = \frac{1698}{27} = 62 \frac{24}{27}[/tex]
[tex]1. \: \(1 \frac{3}{2} + 1 \frac{3}{5} = 4 \frac{1}{10}[/tex]
[tex]2. \: \(\frac{2}{11} + 2 \frac{1}{2} = 2 \frac{15}{22}[/tex]
[tex]3. \: \(1 \frac{1}{3} + \frac{1}{5} = 1 \frac{8}{15}[/tex]
[tex]4. \: \(2 \frac{3}{4} + \frac{2}{2} = 3 \frac{3}{4}[/tex]
[tex]5. \: \(1 \frac{1}{2} + \frac{2}{3} = 2 \frac{1}{6}[/tex]
[tex]6. \: \(3 \frac{1}{2} + \frac{4}{5} = 4 \frac{3}{10}[/tex]
[tex]7. \: \(4 \frac{1}{4} + 2 \frac{1}{6} = 3 \frac{5}{24}[/tex]
[tex]8. \: \( \frac{5}{6} + 3 \frac{3}{7} = 4 \frac{11}{42}[/tex]
[tex]9. \: \(5 \frac{2}{5} + 2 \frac{1}{4} = 7 \frac{13}{20}[/tex]
[tex]10. \: \(20 \times 3 \frac{1}{9} + \frac{2}{3} = 62 \frac{24}{27}[/tex]
Maraming salamat sa iyong aktibong pakikilahok. Patuloy na magbahagi ng impormasyon at kasagutan. Sama-sama tayong lumikha ng isang masiglang komunidad ng pagkatuto. Para sa mga de-kalidad na sagot, piliin ang IDNStudy.com. Salamat at bumalik ka ulit sa aming site.