Sumali sa IDNStudy.com at makuha ang mga sagot ng eksperto. Magtanong ng anumang bagay at makatanggap ng kumpleto at eksaktong sagot mula sa aming komunidad ng mga propesyonal.
Find the circumferential (hoop) stress in a cylindrical bar under axial load, we use the formula for hoop stress:
[tex]\sigma_h = \frac{F}{A}[/tex]
- (sigma_h) is the circumferential (hoop) stress.
- (F) is the force applied.
- (A) is the cross-sectional area perpendicular to the force.
[tex] \text{ - Diameter of the bar (\(D\)): 10 inches}[/tex]
[tex] \text{ - Wall thickness of the bar (\(t\)): 1 inch}[/tex]
[tex] \text{ - Applied force (\(F\)): 100,000 lbs (each side, so the total force is \(100,000 \, \text{lbs} + 100,000 \, \text{lbs} = 200,000 \, \text{lbs}}[/tex]
[tex]{- \: \text{Inner radius} (\(r_i\)): \(\frac{D}{2} - t = \frac{10}{2} - 1 = 4 \, \text{in}}[/tex]
[tex]{- \: \text{Outer radius} (\(r_o\)): \(\frac{D}{2} = \frac{10}{2} = 5 \, \text{in}}[/tex]
[tex]A = \pi (r_o^2 - r_i^2)[/tex]
[tex]{A = \pi (5^2 - 4^2) = \pi (25 - 16) = \pi \cdot 9 = 28.27433 \, \text{in}^2}[/tex]
Calculate the circumferential stress (sigma_h)):
[tex]
{\sigma_h = \frac{F}{A} = \frac{200,000 \, \text{lbs}}{28.27433 \, \text{in}^2} = \boxed{7071.07 \, \text{psi}}} [/tex]
[tex]\sigma_h [/tex]