Sumali sa IDNStudy.com at makuha ang mga sagot ng eksperto. Magtanong ng anumang bagay at makatanggap ng kumpleto at eksaktong sagot mula sa aming komunidad ng mga propesyonal.

GIVEN:
Di = 10 in
t = 1 in
What is is circumferential stress?
100,000 lbs

100,000 lbs

GIVENDi 10 Int 1 InWhat Is Is Circumferential Stress100000 Lbs100000 Lbs class=

Sagot :

Find the circumferential (hoop) stress in a cylindrical bar under axial load, we use the formula for hoop stress:

[tex]\sigma_h = \frac{F}{A}[/tex]

where:

- (sigma_h) is the circumferential (hoop) stress.

- (F) is the force applied.

- (A) is the cross-sectional area perpendicular to the force.

Given:

[tex] \text{ - Diameter of the bar (\(D\)): 10 inches}[/tex]

[tex] \text{ - Wall thickness of the bar (\(t\)): 1 inch}[/tex]

[tex] \text{ - Applied force (\(F\)): 100,000 lbs (each side, so the total force is \(100,000 \, \text{lbs} + 100,000 \, \text{lbs} = 200,000 \, \text{lbs}}[/tex]

Need to calculate the inner and outer radii of the bar:

[tex]{- \: \text{Inner radius} (\(r_i\)): \(\frac{D}{2} - t = \frac{10}{2} - 1 = 4 \, \text{in}}[/tex]

[tex]{- \: \text{Outer radius} (\(r_o\)): \(\frac{D}{2} = \frac{10}{2} = 5 \, \text{in}}[/tex]

Next, calculate the cross-sectional area (A) of the bar:

[tex]A = \pi (r_o^2 - r_i^2)[/tex]

[tex]{A = \pi (5^2 - 4^2) = \pi (25 - 16) = \pi \cdot 9 = 28.27433 \, \text{in}^2}[/tex]

Calculate the circumferential stress (sigma_h)):

[tex]

{\sigma_h = \frac{F}{A} = \frac{200,000 \, \text{lbs}}{28.27433 \, \text{in}^2} = \boxed{7071.07 \, \text{psi}}} [/tex]

Calculate The Circumferential Stress in the bar is 7071 psi

Explanation:

what is (sigma_h)?

[tex]\sigma_h [/tex]