Suriin ang IDNStudy.com para sa detalyadong mga sagot sa iyong mga tanong. Tuklasin ang libu-libong mga sagot na na-verify ng mga eksperto at hanapin ang mga solusyong kailangan mo, anuman ang paksa.
Sagot :
Answer:
- The distance from (F) to {SCHOOL} (d_{FS} is 8 km
- The distance between the two points Brother walked between (which we assumed to be (F) and (G) is 4 km
Step-by-step explanation:
Given Information:
[tex]{ - \text{ (Total distance Brother walked} \(d_{BB}\): \(8 \, \text{km}}[/tex]
[tex]- {\text{(Total distance Sister walked} \(d_{SS}\): \(20 \, \text{km}}[/tex]
[tex]{- Distance from \: \(F\) \: to \ \: (\text{SCHOOL}\) \: and \: back \: (\(2 \times d_{FS}\)) \: is \: a \: part \: of \: Sister's \: total \: distance.} [/tex]
Step-by-Step Solution:
1. Brother's total distance (back and forth) is twice the distance between two points:
[tex]{2 \times d_{BB} = 8 \, \text{km} \implies d_{BB} = \frac{8}{2} = 4 \, \text{km}}[/tex]
The distance between the two points
[tex] \text{(we will assume these are} (F) and (G) \: is \: (4 , \text{km}\).[/tex]
2. Sister's Journey:
For Sister, the total distance walked is:
[tex] {d_{FS} + d_{FS} + d_{FG} = 20 \, \text{km} \implies 2d_{FS} + d_{FG} = 20 \, \text{km}}[/tex]
[tex] {\text{We already know from Brother's journey that} \(d_{FG} = 4 \, \text{km}}[/tex]
3. Substituting (d_{FG} into the equation:
[tex]2d_{FS} + 4 \, \text{km} = 20 \, \text{km}[/tex]
[tex]2d_{FS} = 20 \, \text{km} - 4 \, \text{km} = 16 \, \text{km}[/tex]
[tex]d_{FS} = \frac{16}{2} = 8 \, \text{km}[/tex]
Maraming salamat sa iyong pakikilahok. Patuloy na magbahagi ng impormasyon at karanasan. Sama-sama tayong magtatagumpay sa ating layunin. Ang IDNStudy.com ang iyong mapagkakatiwalaang mapagkukunan ng mga sagot. Salamat at bumalik ka ulit.