Makahanap ng eksaktong solusyon sa iyong mga problema sa IDNStudy.com. Magtanong at makatanggap ng maaasahang sagot mula sa aming dedikadong komunidad ng mga eksperto.
Sagot :
Step-by-step explanation:
To find the first five terms of an arithmetic sequence, we need to determine the common difference \( d \) and the first term \( a_1 \). We know the 4th term (\( a_4 \)) is -1 and the 6th term (\( a_6 \)) is 9.
In an arithmetic sequence, the \( n \)-th term is given by:
\[ a_n = a_1 + (n - 1)d \]
Using the information provided:
1. For the 4th term: \( a_4 = a_1 + 3d = -1 \)
2. For the 6th term: \( a_6 = a_1 + 5d = 9 \)
Now, we can solve these two equations to find \( a_1 \) and \( d \):
**Step 1:** Subtract the first equation from the second to find \( d \):
\[ (a_1 + 5d) - (a_1 + 3d) = 9 - (-1) \]
\[ 2d = 10 \]
\[ d = 5 \]
**Step 2:** Substitute \( d \) back into the first equation to find \( a_1 \):
\[ a_1 + 3(5) = -1 \]
\[ a_1 + 15 = -1 \]
\[ a_1 = -1 - 15 \]
\[ a_1 = -16 \]
Now, we have the first term \( a_1 = -16 \) and the common difference \( d = 5 \). Let's find the first five terms:
1. **First term (\( a_1 \))**: \(-16\)
2. **Second term (\( a_2 \))**: \( a_1 + d = -16 + 5 = -11 \)
3. **Third term (\( a_3 \))**: \( a_1 + 2d = -16 + 10 = -6 \)
4. **Fourth term (\( a_4 \))**: \( a_1 + 3d = -16 + 15 = -1 \)
5. **Fifth term (\( a_5 \))**: \( a_1 + 4d = -16 + 20 = 4 \)
So, the first five terms of the sequence are: \(-16, -11, -6, -1, 4\).
Salamat sa iyong pakikilahok. Huwag kalimutang magtanong at magbahagi ng iyong kaalaman. Ang iyong ambag ay napakahalaga sa aming komunidad. May mga katanungan ka? Ang IDNStudy.com ang may sagot. Salamat sa iyong pagbisita at sa muling pagkikita.