Magtanong at makakuha ng maaasahang mga sagot sa IDNStudy.com. Ang aming platform ng tanong at sagot ay idinisenyo upang magbigay ng mabilis at eksaktong sagot sa lahat ng iyong mga tanong.
Sagot :
The (n+2) term of an arithmetic progression can be given by the formula:
[tex]\[ a_{n+2} = a + (n+1)d \][/tex]
Given:
[tex]a = -4[/tex]
[tex]l = 16 [/tex]
[tex]a_{n+2} = l = 16[/tex]
We can write:
[tex]16 = -4 + (n+1)d[/tex]
[tex]16 + 4 = (n+1)d[/tex]
[tex]20 = (n+1)d[/tex]
Case 1: Inserting 2 Arithmetic Means
lnsert (2) arithmetic means (n = 2):
[tex]20 = (2+1)d[/tex]
[tex]20 = 3d[/tex]
[tex]d = \frac{20}{3} = \frac{20}{3} \approx 6.67[/tex]
The sequence in this case is:
[tex]-4, -4 + \frac{20}{3}, -4 + 2 \left(\frac{20}{3}\right), 16[/tex]
Simplifying:
[tex]{-4, \frac{-4+20}{3} = \frac{16}{3} \approx 5.33, \frac{-4+40}{3} = \frac{36}{3} = 12, 16}[/tex]
Case 2: Inserting 3 Arithmetic Means
lnsert (3) arithmetic means (n = 3):
[tex]20 = (3+1)d[/tex]
[tex]20 = 4d[/tex]
[tex]d = \frac{20}{4} = 5[/tex]
The sequence in this case is:
[tex]{-4, -4 + 5, -4 + 2 \cdot 5, -4 + 3 \cdot 5, 16}[/tex]
Simplifying:
[tex]-4, 1, 6, 11, 16 [/tex]
General Formula
In general, if you want (n) arithmetic means, the common difference (d) is:
[tex]d = \frac{20}{n+1}[/tex]
And the arithmetic means are:
[tex]a, a + d, a + 2d, \ldots, a + nd[/tex]
Let's consider one more example.
Case 3: Inserting 4 Arithmetic Means
Insert (4) arithmetic means (n = 4):
[tex]20 = (4+1)d[/tex]
[tex]20 = 5d[/tex]
[tex]d = \frac{20}{5} = 4[/tex]
The sequence in this case is:
[tex]{-4, -4 + 4, -4 + 2 \cdot 4, -4 + 3 \cdot 4, -4 + 4 \cdot 4, 16}[/tex]
Simplifying:
[tex]-4, 0, 4, 8, 12, 16[/tex]
Ang iyong kontribusyon ay napakahalaga sa amin. Huwag kalimutang bumalik upang magtanong at matuto ng mga bagong bagay. Sama-sama tayong magpapaunlad ng kaalaman para sa lahat. May mga katanungan ka? Ang IDNStudy.com ang may sagot. Bisitahin kami palagi para sa pinakabagong impormasyon.