Suriin ang IDNStudy.com para sa detalyadong mga sagot sa iyong mga tanong. Ang aming platform ay idinisenyo upang magbigay ng mabilis at eksaktong sagot sa lahat ng iyong mga tanong.
Sagot :
Answer:
To find the sum of the series
[tex]S_n = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots + \frac{1}{n^2},
[/tex]
we can express it as:
[tex]S_n = \sum_{k=1}^{n} \frac{1}{k^2}.[/tex]
This series is known as the partial sum of the Basel problem, which converges to a specific value as n approaches infinity. The exact value of the infinite series is given by:
[tex]\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}.[/tex]
However, since we are interested in the finite sum S_n , we can compute it for specific values of n or use known approximations for larger n .
Step 1: Calculate for Small Values of n
Let's calculate S_n for small values of n :
[tex]- \text{For n = 1 :}[/tex]
[tex]S_1 = 1.[/tex]
[tex]- \text{For} \: n = 2 :[/tex]
[tex]S_2 = 1 + \frac{1}{2^2} = 1 + \frac{1}{4} = \frac{5}{4}.[/tex]
[tex]- \text{For} \: n = 3 :[/tex]
[tex]{S_3 = 1 + \frac{1}{2^2} + \frac{1}{3^2} = 1 + \frac{1}{4} + \frac{1}{9} = \frac{36}{36} + \frac{9}{36} + \frac{4}{36} = \frac{49}{36}.}[/tex]
[tex] \text{For} \: n = 4 :[/tex]
[tex]{S_4 = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} = \frac{49}{36} + \frac{1}{16} = \frac{49}{36} + \frac{9}{144} = \frac{196}{144} + \frac{9}{144} = \frac{205}{144}.}[/tex]
Step 2: General Formula for Large n
For large n , the sum S_n can be approximated using the known result:
[tex]S_n \approx \frac{\pi^2}{6} - \frac{1}{n}.[/tex]
Thus, the final answer for the sum of the series up to n is:
[tex]S_n = \sum_{k=1}^{n} \frac{1}{k^2}.[/tex]
Maraming salamat sa iyong pakikilahok. Huwag kalimutang bumalik at magtanong ng mga bagong bagay. Ang iyong kaalaman ay mahalaga sa ating komunidad. Ang IDNStudy.com ay nangako na sasagutin ang lahat ng iyong mga tanong. Salamat at bisitahin kami palagi.