Makahanap ng mga solusyon sa iyong mga problema sa tulong ng mga eksperto ng IDNStudy.com. Makakuha ng impormasyon mula sa aming mga eksperto, na nagbibigay ng detalyadong sagot sa lahat ng iyong mga tanong.
Sagot :
Answer:
### Summary of Answers:
1. FALSE
2. TRUE
3. FALSE
4. TRUE
5. FALSE
6. FALSE
7. TRUE
8. FALSE
9. FALSE
10. TRUE (with clarification needed on the calcula
Step-by-step explanation:
1. In permutation, order does not matter.**
Answer: FALSE
(In permutations, the order does matter.)
2. If objects are arranged in a circle, the number of permutations of the said objects is (n-1)
Answer: TRUE
(When arranging n$ objects in a circle, the number of distinct arrangements is (n-1.)
3. The number of permutations of the word CHOOSE is 500.
Answer: FALSE
(The word "CHOOSE" has repeated letters, and the correct calculation gives a different number.)
4. There are 2,520 different ways the 5 bicycles can be parked if there are 7 available parking spaces.*
Answer: TRUE
(This is a permutation problem where
[tex]P(7, 5) = \frac{7!}{(7-5)!} = 7 \times 6 \times 5 \times 4 \times 3 = 2520.[/tex]
5. There are 300 different ways digits 1, 2, 3, 4, 5, and 6 can be formed if no repetition is allowed.
Answer: FALSE
(The number of arrangements of 6 digits without repetition is 6 = 720.)
6. If objects are arranged in a ring or key chain, the number of permutations of the said objects is
[tex]P = \frac{n!}{r! s! t! h!}[/tex]
Answer: FALSE
(The formula for arrangements in a ring is $(n-1)!for distinct objects, not the one given.)
7. Your friend can arrange 5 books on a shelf in 120 ways.
Answer: TRUE
(The number of arrangements of 5 books is 5! = 120.)
8. The formula for the permutation of n objects taken r at a time is n!
Answer: FALSE
(The correct formula is $P(n, r) = \frac{n!}{(n-r)!}$.)
9. Permutation with repetition or the distinguishable permutation where r objects are alike, s objects are alike, t objects are alike, u objects are alike and so on, has the formula:
[tex]P(n, n) = n! or _{n}P_{n} = n![/tex]
Answer: FALSE
(The formula for distinguishable permutations is
[tex]\frac{n!}{r_1! r_2! \ldots r_k!}[/tex]
where r_i are the counts of indistinguishable objects.)
10. There are 210 ways the 5 couples can arrange themselves in a row where each couple must stay together for their pictures to be taken.*
Answer: TRUE
(If each couple is treated as a single unit, there are 5! arrangements of the couples, and within each couple, there are 2 arrangements, giving 5! x 2⁵ = 120 \times 32 = 3840.
Ang iyong aktibong pakikilahok ay mahalaga sa amin. Magpatuloy sa pagtatanong at pagbibigay ng mga sagot. Sama-sama tayong lumikha ng isang komunidad ng karunungan. Para sa mabilis at eksaktong mga solusyon, isipin ang IDNStudy.com. Salamat sa iyong pagbisita at sa muling pagkikita.