IDNStudy.com, kung saan ang iyong mga tanong ay natutugunan ng eksaktong sagot. Magtanong ng anumang bagay at makatanggap ng kumpleto at eksaktong sagot mula sa aming komunidad ng mga propesyonal.

Let f(x) = x² - 4x3 + 6x2 4x + 1. Prove that f (x) is always non-negative for all real numbers x.​

Sagot :

Step-by-step explanation:

[tex]f(x) = x^2 - 4x^3 + 6x^2 - 4x + 1[/tex]

Combine like terms:

[tex]f(x) = -4x^3 + 7x^2 - 4x + 1[/tex]

[tex]{f'(x) = \frac{d}{dx} (-4x^3 + 7x^2 - 4x + 1) }[/tex]

[tex]f'(x) = -12x^2 + 14x - 4[/tex]

Set the derivative to zero to find the critical points:

[tex]-12x^2 + 14x - 4 = 0[/tex]

[tex]( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \):[/tex]

[tex]x = \frac{-14 \pm \sqrt{14^2 - 4(-12)(-4)}}{2(-12)}[/tex]

[tex]x = \frac{-14 \pm \sqrt{196 - 192}}{-24}[/tex]

[tex]x = \frac{-14 \pm \sqrt{4}}{-24}[/tex]

[tex]x = \frac{-14 \pm 2}{-24}[/tex]

[tex]x = \frac{-12}{-24} = \frac{1}{2}[/tex]

[tex]x = \frac{-16}{-24} = \frac{2}{3}[/tex]

Evaluate ( f(x) ) at these critical points:

[tex]{f\left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^2 - 4\left(\frac{1}{2}\right)^3 + 6\left(\frac{1}{2}\right)^2 - 4\left(\frac{1}{2}\right) + 1}[/tex]

[tex]= \frac{1}{4} - \frac{4}{8} + \frac{6}{4} - 2 + 1[/tex]

[tex]= \frac{1}{4} - \frac{1}{2} + \frac{3}{2} - 2 + 1[/tex]

[tex]= \frac{1}{4} - \frac{1}{2} + \frac{3}{2} - 2 + 1 [/tex]

[tex]= \frac{1}{4} - \frac{2}{4} + \frac{6}{4} - \frac{8}{4} + \frac{4}{4}[/tex]

[tex]= \frac{1 - 2 + 6 - 8 + 4}{4}[/tex]

[tex]= \frac{1}{4}[/tex]

[tex] \text{Similarly}, for \( x = \frac{2}{3} \):[/tex]

[tex]{f\left(\frac{2}{3}\right) = \left(\frac{2}{3}\right)^2 - 4\left(\frac{2}{3}\right)^3 + 6\left(\frac{2}{3}\right)^2 - 4\left(\frac{2}{3}\right) + 1}[/tex]

[tex]= \frac{4}{9} - 4\left(\frac{8}{27}\right) + 6\left(\frac{4}{9}\right) - \frac{8}{3} + 1[/tex]

[tex]= \frac{4}{9} - \frac{32}{27} + \frac{24}{9} - \frac{24}{9} + 1[/tex]

[tex]= \frac{4}{9} - \frac{32}{27} + \frac{24}{9} - \frac{24}{9} + 1[/tex]

[tex]= 1 - \frac{32}{27}[/tex]

[tex]= \frac{27}{27} - \frac{32}{27}[/tex]

[tex]= \frac{-5}{27}[/tex]