Makakuha ng mga maaasahang sagot sa iyong mga tanong sa IDNStudy.com. Ang aming komunidad ay nagbibigay ng eksaktong sagot upang matulungan kang maunawaan at malutas ang anumang problema.

B. Find the value of x; then write the first 5 terms of
the arithmetic sequence, given a₁ and d.
1) a₁ = x, d=3x, a₁ = 25
2) a₁ = x, d = ½ x, a₁₁ = 30
3) a
3
1=x, d=8x, a7=10
4) a₁ =x, d=x, a₁ = 36
5) a₁ =x, d = −5x, ag = -11.5
12

Sagot :

Answer:

Problem 1:

Given:

[tex](a_1 = x ), ( d = 3x ), ( a_1 = 25 )[/tex]

[tex]x = 25[/tex]

The common difference ( d ) is:

[tex]d = 3x = 3 \times 25 = 75 [/tex]

First five terms of the sequence:

[tex]a_1 = 25[/tex]

[tex]a_2 = a_1 + d = 25 + 75 = 100[/tex]

[tex]a_3 = a_2 + d = 100 + 75 = 175[/tex]

[tex]a_4 = a_3 + d = 175 + 75 = 250[/tex]

[tex]a_5 = a_4 + d = 250 + 75 = 325[/tex]

[tex] \text{First five terms:} 25, 100, 175, 250, 325 [/tex]

Problem 2:

Given:

[tex] ( a_1 = x ), ( d = \frac{1}{2}x ), ( a_{11} = 30 )[/tex]

[tex] \text{Since} ( a_1 = x ),[/tex]

The ( n )-th term of an arithmetic sequence is given by:

[tex]a_n = a_1 + (n-1)d[/tex]

Substitute ( n = 11 ):

[tex]a_{11} = x + (11-1) \left( \frac{1}{2} x \right) = 30[/tex]

[tex]30 = x + 10 \left( \frac{1}{2} x \right)[/tex]

[tex]30 = x + 5x[/tex]

[tex]30 = 6x[/tex]

[tex]x = 5[/tex]

The common difference ( d ) is:

[tex]d = \frac{1}{2}x = \frac{1}{2} \times 5 = 2.5[/tex]

First five terms of the sequence:

[tex]a_1 = 5 [/tex]

[tex]a_2 = a_1 + d = 5 + 2.5 = 7.5[/tex]

[tex]a_3 = a_2 + d = 7.5 + 2.5 = 10[/tex]

[tex]a_4 = a_3 + d = 10 + 2.5 = 12.5[/tex]

[tex]a_5 = a_4 + d = 12.5 + 2.5 = 15[/tex]

First five terms: [ 5, 7.5, 10, 12.5, 15 ]

Problem 3:

Given:

[tex]( a_1 = x ), ( d = 8x ), ( a_7 = 10 )[/tex]

[tex]{ \text{We need to find ( x ) such that }( a_7 = 10 ).}[/tex]

The ( n )-th term of an arithmetic sequence is given by:

[tex]a_n = a_1 + (n-1)d[/tex]

Substitute ( n = 7 ):

[tex]a_7 = x + (7-1) \left( 8x \right) = 10[/tex]

[tex]10 = x + 6 \left( 8x \right)[/tex]

[tex]10 = x + 48x[/tex]

[tex]10 = 49x[/tex]

[tex]x = \frac{10}{49} [/tex]

The common difference ( d ) is:

[tex]d = 8x = 8 \left( \frac{10}{49} \right) = \frac{80}{49}[/tex]

First five terms of the sequence:

[tex]a_1 = \frac{10}{49}[/tex]

[tex]a_2 = a_1 + d = \frac{10}{49} + \frac{80}{49} = \frac{90}{49}[/tex]

[tex]a_3 = a_2 + d = \frac{90}{49} + \frac{80}{49} = \frac{170}{49}[/tex]

[tex]a_4 = a_3 + d = \frac{170}{49} + \frac{80}{49} = \frac{250}{49} [/tex]

[tex]a_5 = a_4 + d = \frac{250}{49} + \frac{80}{49} = \frac{330}{49}[/tex]

First five terms:

[tex]\frac{10}{49}, \frac{90}{49}, \frac{170}{49}, \frac{250}{49}, \frac{330}{49}[/tex]

Problem 4:

Given:

[tex]( a_1 = x ), ( d = x ), ( a_1 = 36 )[/tex]

The common difference ( d ) is:

[tex]d = x = 36[/tex]

First five terms of the sequence:

[tex]a_1 = 36[/tex]

[tex]a_2 = a_1 + d = 36 + 36 = 72

[/tex]

[tex]a_3 = a_2 + d = 72 + 36 = 108[/tex]

[tex]a_4 = a_3 + d = 108 + 36 = 144[/tex]

[tex]a_5 = a_4 + d = 144 + 36 = 180[/tex]

First five terms:

[tex] [ 36, 72, 108, 144, 180 ][/tex]

Problem 5:

Given:

[tex]{( a_1 = x ), ( d = -5x ), ( a_{12} = -11.5 )}[/tex]

[tex] {\text{We need to find ( x ) such that} ( a_{12} = -11.5 ).}[/tex]

The ( n )-th term of an arithmetic sequence is given by:

[tex]a_n = a_1 + (n-1)d [/tex]

Substitute ( n = 12 ):

[tex]{a_{12} = x + (12-1) \left( -5x \right) = -11.5}[/tex]

[tex]-11.5 = x - 55x[/tex]

[tex]-11.5 = -54x[/tex]

[tex]x = \frac{11.5}{54} \approx \frac{23}{108}[/tex]

The common difference ( d ) is:

[tex]d = -5x = -5 \left( \frac{23}{108} \right) = \frac{-115}{108} [/tex]

First five terms of the sequence:

[tex]a_1 = \frac{23}{108}[/tex]

[tex]{a_2 = a_1 + d = \frac{23}{108} + \frac{-115}{108} = \frac{23 - 115}{108} = \frac{-92}{108} = \frac{-46}{54}}[/tex]

[tex]{a_3 = a_2 + d = \frac{-46}{54} + \frac{-115}{108} = \frac{-92 - 115}{108} = \frac{-207}{108} = -1.9167}[/tex]

[tex]{a_4 = a_3 + d = -1.9167 + \frac{-115}{108} = -1.9167 - 1.0648 = -2.9815}[/tex]

[tex]{a_5 = a_4 + d = -2.9815 + \frac{-115}{108} = -2.9815 - 1.0648 = -4.0463}[/tex]

First five terms:

[tex] \frac{23}{108}, \frac{-46}{54}, -1.9167, -2.9815, -4.0463[/tex]

Ang iyong kontribusyon ay napakahalaga sa amin. Huwag kalimutang bumalik upang magtanong at matuto ng mga bagong bagay. Sama-sama tayong magpapaunlad ng kaalaman para sa lahat. Para sa mabilis at eksaktong mga solusyon, isipin ang IDNStudy.com. Salamat sa iyong pagbisita at sa muling pagkikita.