IDNStudy.com, ang iyong platform ng sanggunian para sa eksaktong mga sagot. Tuklasin ang mga kumpletong sagot sa iyong mga tanong mula sa aming komunidad ng mga eksperto.
Peter is 20 years old and Mary is 24 years old
Step-by-step explanation:
1. Mary is four years older than Peter:
M = P + 4
2. Peter’s age is five-sixths of Mary’s age:
[tex]P = \frac{5}{6}M[/tex]
We can substitute the first equation into the second equation to find the values of ( P ) and ( M ):
[tex]{ \text{Substitute }( M = P + 4 ) \: into \: ( P = \frac{5}{6}M ):}[/tex]
[tex]P = \frac{5}{6}(P + 4)[/tex]
[tex](\frac{5}{6})[/tex]
[tex]P = \frac{5}{6}P + \frac{5}{6} \cdot 4[/tex]
[tex]P = \frac{5}{6}P + \frac{20}{6}[/tex]
[tex]P = \frac{5}{6}P + \frac{10}{3}[/tex]
Next, subtract
[tex](\frac{5}{6}P)[/tex]
from both sides to isolate ( P ):
[tex]P - \frac{5}{6}P = \frac{10}{3}[/tex]
[tex]\frac{1}{6}P = \frac{10}{3}[/tex]
To solve for ( P ), multiply both sides by 6:
[tex]P = 6 \cdot \frac{10}{3}[/tex]
[tex]P = \boxed {20}[/tex]
Now that we know Peter's age (( P = 20 )), we can find Mary's age using ( M = P + 4 ):
[tex]M = 20 + 4[/tex]
[tex]M = \boxed {24}[/tex]