Makakuha ng detalyadong mga sagot sa lahat ng iyong katanungan sa IDNStudy.com. Ang aming platform ng tanong at sagot ay idinisenyo upang magbigay ng mabilis at eksaktong sagot sa lahat ng iyong mga tanong.

The angle between the 2-m bar and the x-axis varies according to the equation = 0.3t3 - 1.6t + 3 where is in radians and t is in seconds. Which of the following most nearly gives the angular position of the bar when t = 2 s?
a. 126.05 b. 130.70 c. 112.15 d. 56.84​

Sagot :

Answer:

a. 126.05

Explanation:

Equation

[tex]\theta = 0.3t^3 - 1.6t + 3[/tex]

Step-by-Step Solution:

1. Substitute ( t = 2 ) into the equation:

[tex]\theta = 0.3(2)^3 - 1.6(2) + 3[/tex]

2. Calculate each term separately:

[tex]( (2)^3 = 8 )[/tex]

[tex]( 0.3 \times 8 = 2.4 )[/tex]

[tex]( 1.6 \times 2 = 3.2 )[/tex]

3. Combine the terms:

[tex]\theta = 2.4 - 3.2 + 3[/tex]

4. Perform the addition and subtraction:

[tex]{\theta = 2.4 - 3.2 + 3 = 2.4 - 3.2 + 3 = -0.8 + 3 = 2.2}

[/tex]

The angular position

[tex]{ (\theta) \text when ( t = 2 ) seconds is ( 2.2 ) radians.}[/tex]

Conversion to Degrees:

To convert the angle from radians to degrees, use the conversion factor

[tex]( 180^\circ / \pi ):[/tex]

[tex]\theta_{\text{degrees}} = 2.2 \times \left( \frac{180^\circ}{\pi} \right)[/tex]

[tex]using \ (\pi \approx 3.14159):[/tex]

[tex]{\theta_{\text{degrees}} = 2.2 \times \left( \frac{180^\circ}{3.14159} \right) \approx 2.2 \times 57.2958 \approx 126.05^\circ}[/tex]