Sumali sa IDNStudy.com para sa detalyadong mga sagot sa iyong mga tanong. Hanapin ang mga solusyong kailangan mo nang mabilis at tiyak sa tulong ng aming mga bihasang miyembro.

80°, ABC = 60°, D is a point in the shape, and DAB = 10°, DBA = 20°. Find the degree of ACD.

Sagot :

Answer:

Given:

[tex]( \angle BAC = 80^\circ )[/tex]

[tex]( \angle ABC = 60^\circ )[/tex]

[tex]( D ) \text{is a point such that:}[/tex]

[tex]( \angle DAB = 10^\circ )[/tex]

[tex]( \angle DBA = 20^\circ )[/tex]

[tex]2. \text{Determine} \: ( \angle ADB ):[/tex]

Since

[tex]{ ( \angle DAB + \angle DBA + \angle ADB = 180^\circ ) }[/tex]

(the sum of angles in triangle ( ABD )),

[tex]( 10^\circ + 20^\circ + \angle ADB = 180^\circ ),[/tex]

[tex]( \angle ADB = 180^\circ - 30^\circ = 150^\circ ).[/tex]

[tex]3. \text{Determine} ( \angle BCA ) in triangle ( ABC ):[/tex]

The sum of angles in triangle ( ABC ):

[tex]{( \angle BAC + \angle ABC + \angle BCA = 180^\circ ),}[/tex]

[tex]( 80^\circ + 60^\circ + \angle BCA = 180^\circ ),[/tex]

[tex]( \angle BCA = 180^\circ - 140^\circ = 40^\circ ).[/tex]

4. Determine ( angle ACD ):

Since ( D ) lies inside triangle ( ABC ), ( angle ACD ) is an exterior angle for triangle ( ADB ).

The exterior angle ( angle ACD ) is equal to the sum of the two non-adjacent interior angles of triangle ( ADB ):

[tex]( \angle ACD = \angle DAB + \angle DBA ),[/tex]

[tex]( \angle ACD = 10^\circ + 20^\circ = 30^\circ ).[/tex]

[tex]∴ \text {The degree of} ( \angle ACD ) \: is \: ( 30^\circ ).[/tex]