IDNStudy.com, ang iyong mapagkukunan para sa malinaw at maaasahang mga sagot. Sumali sa aming platform ng tanong at sagot upang makatanggap ng mabilis at eksaktong tugon mula sa mga propesyonal sa iba't ibang larangan.
Answer:
Each term in the sequence adds another digit '1' to the previous term:
1. First term: ( 0.1 )
2. Second term: ( 0.11 )
3. Third term: ( 0.111 )
4. Fourth term: ( 0.1111 )
We can express each term as:
[tex]a_n = 0.\underbrace{111\ldots1}_{n \text{ ones}}[/tex]
To write this in a more mathematical form, we can use the fact that each term is a sum of fractions:
[tex]a_n = \sum_{k=1}^{n} \frac{1}{10^k}[/tex]
Alternatively, we can represent each term as a finite geometric series:
[tex]a_n = \frac{1}{10} + \frac{1}{100} + \frac{1}{1000} + \cdots + \frac{1}{10^n}[/tex]
This geometric series can be simplified using the formula for the sum of a geometric series:
[tex]a_n = \frac{1 - \left(\frac{1}{10}\right)^n}{10 - 1}[/tex]
Since ( 10 - 1 = 9 ):
[tex]a_n = \frac{1 - 10^{-n}}{9}[/tex]
So the rule for the nth term of the sequence is:
[tex]a_n = \frac{1 - 10^{-n}}{9}[/tex]