Makakuha ng eksaktong at maaasahang sagot sa lahat ng iyong katanungan sa IDNStudy.com. Sumali sa aming platform ng tanong at sagot upang makatanggap ng mabilis at eksaktong tugon mula sa mga propesyonal sa iba't ibang larangan.

Find the reciprocal of:​

Find The Reciprocal Of class=

Sagot :

[tex]Sure, let's break down the problem step by step.

First, consider the expression given:

\[

\left( -\frac{8}{11} \right)^{-5} + \left( \left( -\frac{8}{11} \right)^2 \right)^3

\]

Let's simplify each part separately:

1. Simplify \(\left( -\frac{8}{11} \right)^{-5}\):

Using the property of exponents: \(a^{-n} = \frac{1}{a^n}\)

\[

\left( -\frac{8}{11} \right)^{-5} = \frac{1}{\left( -\frac{8}{11} \right)^5}

= \frac{1}{\left( -\frac{8}{11} \right)^5}

= \left( -\frac{11}{8} \right)^5 = - \left( \frac{11}{8} \right)^5

\]

2. Simplify \(\left( \left( -\frac{8}{11} \right)^2 \right)^3\):

Using the property of exponents: \((a^m)^n = a^{mn}\)

\[

\left( \left( -\frac{8}{11} \right)^2 \right)^3 = \left( -\frac{8}{11} \right)^{2 \cdot 3} = \left( -\frac{8}{11} \right)^6

= \left( \frac{8}{11} \right)^6

\]

So now, our expression becomes:

\[

-\left( \frac{11}{8} \right)^5 + \left( \frac{8}{11} \right)^6

\]

We need to find the reciprocal of this expression:

\[

\text{Reciprocal of}\left[ -\left( \frac{11}{8} \right)^5 + \left( \frac{8}{11} \right)^6 \right]

= \frac{1}{-\left( \frac{11}{8} \right)^5 + \left( \frac{8}{11} \right)^6}

\]

So the reciprocal of the given expression is:

\[

\boxed{\frac{1}{-\left( \frac{11}{8} \right)^5 + \left( \frac{8}{11} \right)^6}}

\][/tex]