Makakuha ng eksaktong at maaasahang sagot sa lahat ng iyong katanungan sa IDNStudy.com. Sumali sa aming platform ng tanong at sagot upang makatanggap ng mabilis at eksaktong tugon mula sa mga propesyonal sa iba't ibang larangan.
Sagot :
[tex]Sure, let's break down the problem step by step.
First, consider the expression given:
\[
\left( -\frac{8}{11} \right)^{-5} + \left( \left( -\frac{8}{11} \right)^2 \right)^3
\]
Let's simplify each part separately:
1. Simplify \(\left( -\frac{8}{11} \right)^{-5}\):
Using the property of exponents: \(a^{-n} = \frac{1}{a^n}\)
\[
\left( -\frac{8}{11} \right)^{-5} = \frac{1}{\left( -\frac{8}{11} \right)^5}
= \frac{1}{\left( -\frac{8}{11} \right)^5}
= \left( -\frac{11}{8} \right)^5 = - \left( \frac{11}{8} \right)^5
\]
2. Simplify \(\left( \left( -\frac{8}{11} \right)^2 \right)^3\):
Using the property of exponents: \((a^m)^n = a^{mn}\)
\[
\left( \left( -\frac{8}{11} \right)^2 \right)^3 = \left( -\frac{8}{11} \right)^{2 \cdot 3} = \left( -\frac{8}{11} \right)^6
= \left( \frac{8}{11} \right)^6
\]
So now, our expression becomes:
\[
-\left( \frac{11}{8} \right)^5 + \left( \frac{8}{11} \right)^6
\]
We need to find the reciprocal of this expression:
\[
\text{Reciprocal of}\left[ -\left( \frac{11}{8} \right)^5 + \left( \frac{8}{11} \right)^6 \right]
= \frac{1}{-\left( \frac{11}{8} \right)^5 + \left( \frac{8}{11} \right)^6}
\]
So the reciprocal of the given expression is:
\[
\boxed{\frac{1}{-\left( \frac{11}{8} \right)^5 + \left( \frac{8}{11} \right)^6}}
\][/tex]
Ang iyong presensya ay mahalaga sa amin. Magpatuloy sa pagtatanong at pagbibigay ng mga sagot. Sama-sama tayong magtutulungan upang makamit ang mas mataas na antas ng karunungan. Bawat tanong ay may sagot sa IDNStudy.com. Salamat sa pagpili sa amin at sa muling pagkikita.