Sumali sa IDNStudy.com at makuha ang mga sagot ng eksperto. Magtanong ng anumang bagay at makatanggap ng detalyadong sagot mula sa aming komunidad ng mga eksperto.
Sagot :
To determine the number of players who play all three sports, we can apply the principle of the Inclusion-Exclusion formula.
Let's denote the number of players who play football as F, basketball as B, and volleyball as V. According to the problem:
F = 14 (Football players)
B = 7 (Basketball players)
V = 15 (Volleyball players)
We are also given that 2 players play all three sports, and 4 players play both football and volleyball only. Using the Inclusion-Exclusion principle:
N(F ∪ B ∪ V) = N(F) + N(B) + N(V) - N(F ∩ B) - N(F ∩ V) - N(B ∩ V) + N(F ∩ B ∩ V)
Substitute the given values:
N(F ∪ B ∪ V) = 14 + 7 + 15 - 4 - 2 - 7 + 2
N(F ∪ B ∪ V) = 25
Therefore, the total number of players who play all three sports is 2.
Ang iyong aktibong pakikilahok ay mahalaga sa amin. Magpatuloy sa pagtatanong at pagbahagi ng iyong nalalaman. Sama-sama tayong lumikha ng isang komunidad ng karunungan. Salamat sa pagpili sa IDNStudy.com. Umaasa kami na makita ka ulit para sa mas maraming solusyon.