Makakuha ng mabilis at maaasahang mga sagot sa IDNStudy.com. Anuman ang kahirapan ng iyong mga tanong, ang aming komunidad ay may mga sagot na kailangan mo.
Sagot :
Answer:
A.) Probability of scoring 80 and above = 0.3881, Number of students = 310 B.) Probability of scoring 75 and below = 0.3336, Number of students = 268 C.) Probability of scoring from 71 to 85 = 0.6826, Number of students = 546
Step-by-step explanation:
Given: Mean (μ) = 78 Standard deviation (σ) = 7 Total number of students = 800
A.) To find the probability of students scoring 80 and above: First, we need to find the Z-score for a score of 80:
Z = X-μ/σ = 80-78/7 = 2/7 = 0.2857
Now, we find the probability using a Z-table: ( > 0.2857) = 1 − ( < 0.2857)
P ( Z > 0.2857) = 1− P(Z<0.2857) (>0.2857) ≈ 1 −0.6119 ≈ 0.3881
To find the number of students who scored 80 and above:
= ∗
= 800 ∗ 0.3881 ≈ 310.48 ≈ 310
B.) To find the probability of students scoring 75 and below: Using the Z-score formula:
Z = X- μ/σ = 75-78/7 = -0.4286
Now, we find the probability using a Z-table:
P ( Z < −0.4286) ≈ 0.3336
To find the number of students who scored 75 and below:
= ∗
= 800 ∗ 0.3336 ≈ 267.68 ≈ 268
C.) To find the probability of students scoring from 71 to 85: We need to find the Z-scores for 71 and 85:
For 71: Z = 71-78/7 = -1
For 85: Z = 85-78/7 = 1
Now, find the probability of Z being between -1 and 1 using the Z-table:
P ( −1 < Z <1 ) ≈ P ( Z < 1 ) − P ( Z < −1 ) = 0.8413 −0.1587 =0.6826
To find the number of students who scored from 71 to 85:
= ∗
= 800 ∗ 0.6826 ≈ 546.08 ≈ 546
Salamat sa iyong pakikilahok. Patuloy na magbahagi ng iyong mga ideya at kasagutan. Ang iyong ambag ay napakahalaga sa aming komunidad. Umaasa kami na natagpuan mo ang hinahanap mo sa IDNStudy.com. Bumalik ka para sa mas maraming solusyon!