Makakuha ng mga sagot mula sa komunidad at mga eksperto sa IDNStudy.com. Makakuha ng impormasyon mula sa aming mga eksperto, na nagbibigay ng detalyadong sagot sa lahat ng iyong mga tanong.

Express the equation as an eclipse in standard form
x²-4y²-2x-40y-103=0

Sagot :

The equation x² - 4y² - 2x - 40y - 103 = 0 can be expressed as an ellipse in standard form by completing the square for both x and y terms.

First, rearrange the equation by grouping the x and x terms together and the y and y terms together:

(x² - 2x) - 4(y² + 10y) = 103

Complete the square for x and y terms:

[(x - 1)² - 1] - 4[(y + 5)² - 25] = 103

Expand the squared terms:

(x - 1)² - 4(y + 5)² + 100 = 103

Rearrange and simplify:

(x - 1)² - 4(y + 5)² = 3

Therefore, the equation of the ellipse in standard form is:

(x - 1)²/3 - 4(y + 5)²/3 = 1

This standard form allows for a clear interpretation of the ellipse's center, semi-major and semi-minor axes lengths, and orientation.