IDNStudy.com, ang iyong destinasyon para sa mabilis at kaugnay na mga sagot. Hanapin ang impormasyon na kailangan mo nang mabilis at madali sa pamamagitan ng aming komprehensibo at eksaktong platform ng tanong at sagot.
Sagot :
[tex]\sf\pink{. . • ☆ . ° .• °:. *₊ ° . ☆. . • ☆ . ° .• °:. *₊ ° . ☆}[/tex]
[tex]\pink{\mathbb{\huge{꧁ᬊᬁ~ANSWER~ᬊ᭄꧂}}}[/tex]
Step-by-step solution:
1) Given:
[tex]\sf\pink{ᯓ★}[/tex] Initial horizontal velocity (v₀): 20 m/s
[tex]\sf\pink{ᯓ★}[/tex] Horizontal distance traveled (d): 60 m
[tex]\sf\pink{ᯓ★}[/tex] Acceleration due to gravity (g): 10 m/s²
2) Horizontal motion:
[tex]\sf\pink{ᯓ★}[/tex] Horizontal velocity remains constant: vx = v₀ = 20 m/s
[tex]\sf\pink{ᯓ★}[/tex] Horizontal distance: d = v₀ • t
3) Vertical motion:
[tex]\sf\pink{ᯓ★}[/tex] Initial vertical velocity (v₀y): 0 m/s
[tex]\sf\pink{ᯓ★}[/tex] Vertical acceleration: ay = -g = -10 m/s²
[tex]\sf\pink{ᯓ★}[/tex] Vertical displacement (height): h = [tex]\large{\frac{1}{2}}[/tex] • ay • t²
4) Equating horizontal distances:
[tex]\sf\pink{ᯓ★}[/tex] d = v₀ • t
[tex]\sf\pink{ᯓ★}[/tex] 60 = 20 • t
[tex]\sf\pink{ᯓ★}[/tex] t = [tex]\large{\frac{60}{20}}[/tex] = 3 s
5) Calculating height:
[tex]\sf\pink{ᯓ★}[/tex] h = [tex]\large{\frac{1}{2}}[/tex] • (-10) • 3²
[tex]\sf\pink{ᯓ★}[/tex] h = [tex]\large{\frac{1}2{}}[/tex] • 90
[tex]\sf\pink{ᯓ★}[/tex] h = 45 m
[tex]\sf\pink{╴╴╴╴╴⊹ꮺ˚ ╴╴╴╴╴⊹˚ ╴╴╴╴˚ೃ ╴╴}[/tex]
So in summary, with the given initial velocity of 20 m/s and the projectile landing 60 m horizontally from the base, the height of the tower must be [tex]\blue{\underline{\sf\pink{45 ~m}}}[/tex].
[tex]\bold{\small\pink{⋆˚࿔~ ashrieIIe~˚⋆}}[/tex] [tex]\pink{\heartsuit}[/tex]
[tex]\sf\pink{. . • ☆ . ° .• °:. *₊ ° . ☆. . • ☆ . ° .• °:. *₊ ° . ☆}[/tex]
Maraming salamat sa iyong aktibong pakikilahok. Patuloy na magbahagi ng impormasyon at kasagutan. Sama-sama tayong lumikha ng isang masiglang komunidad ng pagkatuto. Umaasa kami na natagpuan mo ang hinahanap mo sa IDNStudy.com. Bumalik ka para sa mas maraming solusyon!