Suriin ang IDNStudy.com para sa mabilis na mga solusyon sa iyong mga problema. Magtanong ng anumang bagay at makatanggap ng mga maalam na sagot mula sa aming komunidad ng mga propesyonal.
Sagot :
Answer:
(a) To find the in-situ moist unit weight of the sand, we can use the following equation:
\[
\gamma = (1 + e) \times \frac{\gamma_w \times G}{1 + w}
\]
where:
\(\gamma\) = in-situ moist unit weight of the sand (kN/m³)
\(e\) = void ratio
\(\gamma_w\) = unit weight of water (9.81 kN/m³)
\(G\) = specific gravity of the sand
\(w\) = moisture content
Given:
\(e = 1 - \frac{D_r}{D_{r \text{ max}}} = 1 - \frac{60}{100} = 0.4\)
\(G = 2.65\)
\(w = 0.10\)
Substitute the values into the formula:
\[
\gamma = (1 + 0.4) \times \frac{9.81 \times 2.65}{1 + 0.1} = 1.4 \times \frac{9.81 \times 2.65}{1.1} = 21.09 \, \text{kN/m³}
\]
So, the in-situ moist unit weight of the sand is 21.09 kN/m³.
(b) To calculate the maximum and minimum dry unit weight, we use the formula:
\[
\text{Maximum dry unit weight} = \frac{G}{1 + e_{\text{min}}} \times \gamma_w
\]
\[
\text{Minimum dry unit weight} = \frac{G}{1 + e_{\text{max}}} \times \gamma_w
\]
Given:
\(e_{\text{max}} = 0.94\)
\(e_{\text{min}} = 0.33\)
Calculate:
\[
\text{Maximum dry unit weight} = \frac{2.65}{1 + 0.33} \times 9.81 = \frac{2.65}{1.33} \times 9.81 = 19.72 \, \text{kN/m³}
\]
\[
\text{Minimum dry unit weight} = \frac{2.65}{1 + 0.94} \times 9.81 = \frac{2.65}{1.94} \times 9.81 = 13.36 \, \text{kN/m³}
\]
Therefore, the maximum dry unit weight that the sand can have is 19.72 kN/m³, and the minimum dry unit weight that the sand can have is 13.36 kN/m³.
Pinahahalagahan namin ang bawat tanong at sagot na iyong ibinabahagi. Huwag kalimutang bumalik at magtanong ng mga bagong bagay. Sama-sama tayong magtatagumpay. May mga katanungan ka? Ang IDNStudy.com ang may sagot. Bisitahin kami palagi para sa pinakabagong impormasyon.