Suriin ang IDNStudy.com para sa mabilis na mga solusyon sa iyong mga problema. Magtanong ng anumang bagay at makatanggap ng mga maalam na sagot mula sa aming komunidad ng mga propesyonal.

For sand, the maximum and minimum possible void ratios were determined in the laboratory to be 0.94 and 0.33, respectively. (a) Find the in-situ moist unit weight of the sand in kN/m3 compacted in the field at a relative density of 60%. The specific gravity of the sand is 2.65 and its in-situ moisture content is 10%. (b) Calculate the maximum and minimum dry unit weight in kN/m that the sand can have.

Sagot :

Answer:

(a) To find the in-situ moist unit weight of the sand, we can use the following equation:

\[

\gamma = (1 + e) \times \frac{\gamma_w \times G}{1 + w}

\]

where:

\(\gamma\) = in-situ moist unit weight of the sand (kN/m³)

\(e\) = void ratio

\(\gamma_w\) = unit weight of water (9.81 kN/m³)

\(G\) = specific gravity of the sand

\(w\) = moisture content

Given:

\(e = 1 - \frac{D_r}{D_{r \text{ max}}} = 1 - \frac{60}{100} = 0.4\)

\(G = 2.65\)

\(w = 0.10\)

Substitute the values into the formula:

\[

\gamma = (1 + 0.4) \times \frac{9.81 \times 2.65}{1 + 0.1} = 1.4 \times \frac{9.81 \times 2.65}{1.1} = 21.09 \, \text{kN/m³}

\]

So, the in-situ moist unit weight of the sand is 21.09 kN/m³.

(b) To calculate the maximum and minimum dry unit weight, we use the formula:

\[

\text{Maximum dry unit weight} = \frac{G}{1 + e_{\text{min}}} \times \gamma_w

\]

\[

\text{Minimum dry unit weight} = \frac{G}{1 + e_{\text{max}}} \times \gamma_w

\]

Given:

\(e_{\text{max}} = 0.94\)

\(e_{\text{min}} = 0.33\)

Calculate:

\[

\text{Maximum dry unit weight} = \frac{2.65}{1 + 0.33} \times 9.81 = \frac{2.65}{1.33} \times 9.81 = 19.72 \, \text{kN/m³}

\]

\[

\text{Minimum dry unit weight} = \frac{2.65}{1 + 0.94} \times 9.81 = \frac{2.65}{1.94} \times 9.81 = 13.36 \, \text{kN/m³}

\]

Therefore, the maximum dry unit weight that the sand can have is 19.72 kN/m³, and the minimum dry unit weight that the sand can have is 13.36 kN/m³.