Tuklasin ang maliwanag na mga sagot sa iyong mga tanong sa IDNStudy.com. Magtanong at makakuha ng detalyadong sagot mula sa aming komunidad ng mga eksperto na may kaalaman.

Find the sum 60+91+122+153+184 sum of the arithmetic series

Sagot :

Answer:

To find the sum of an arithmetic series, you can use the formula:

\[ \text{Sum} = \frac{n}{2} \times (a_1 + a_n) \]

where:

- \( \text{Sum} \) is the sum of the series,

- \( n \) is the number of terms in the series,

- \( a_1 \) is the first term, and

- \( a_n \) is the last term.

In this case, the series is:

\[ 60 + 91 + 122 + 153 + 184 \]

The first term, \( a_1 \), is 60, the last term, \( a_n \), is 184, and there are 5 terms in total. So, \( n = 5 \).

Plugging these values into the formula:

\[ \text{Sum} = \frac{5}{2} \times (60 + 184) \]

\[ \text{Sum} = \frac{5}{2} \times 244 \]

\[ \text{Sum} = \frac{5}{2} \times 244 \]

\[ \text{Sum} = \frac{5 \times 244}{2} \]

\[ \text{Sum} = \frac{1220}{2} \]

\[ \text{Sum} = 610 \]

So, the sum of the series is 610.

Maraming salamat sa iyong aktibong pakikilahok. Magpatuloy sa pagtatanong at pagbahagi ng iyong mga ideya. Sama-sama tayong lumikha ng isang mas matibay at produktibong komunidad ng kaalaman. Bawat tanong ay may sagot sa IDNStudy.com. Salamat at sa muling pagkikita para sa mas maraming solusyon.