Tuklasin ang maliwanag na mga sagot sa iyong mga tanong sa IDNStudy.com. Magtanong at makakuha ng detalyadong sagot mula sa aming komunidad ng mga eksperto na may kaalaman.
Answer:
To find the sum of an arithmetic series, you can use the formula:
\[ \text{Sum} = \frac{n}{2} \times (a_1 + a_n) \]
where:
- \( \text{Sum} \) is the sum of the series,
- \( n \) is the number of terms in the series,
- \( a_1 \) is the first term, and
- \( a_n \) is the last term.
In this case, the series is:
\[ 60 + 91 + 122 + 153 + 184 \]
The first term, \( a_1 \), is 60, the last term, \( a_n \), is 184, and there are 5 terms in total. So, \( n = 5 \).
Plugging these values into the formula:
\[ \text{Sum} = \frac{5}{2} \times (60 + 184) \]
\[ \text{Sum} = \frac{5}{2} \times 244 \]
\[ \text{Sum} = \frac{5}{2} \times 244 \]
\[ \text{Sum} = \frac{5 \times 244}{2} \]
\[ \text{Sum} = \frac{1220}{2} \]
\[ \text{Sum} = 610 \]
So, the sum of the series is 610.