IDNStudy.com, ang iyong mapagkukunan para sa mabilis at maaasahang mga sagot. Alamin ang mga detalyadong sagot mula sa mga bihasang miyembro ng aming komunidad na sumasaklaw sa iba't ibang paksa para sa lahat ng iyong pangangailangan.

A population consists of the numbers 2, 3, 5, and 7. Let us list all possible samples of size 3 from this population. Create a sampling probability distribution and find its mean, variance, and standard deviation.

ASAP PO PLSSS

Sagot :

Answer:

To solve this problem, let's start by listing all possible samples of size 3 from the population \(\{2, 3, 5, 7\}\).

### Step 1: List all possible samples

We are drawing samples without replacement. The total number of possible samples of size 3 from a population of 4 elements is given by the combination formula \( \binom{4}{3} \), which is 4. The samples are:

1. \( \{2, 3, 5\} \)

2. \( \{2, 3, 7\} \)

3. \( \{2, 5, 7\} \)

4. \( \{3, 5, 7\} \)

### Step 2: Calculate the mean of each sample

- Mean of \( \{2, 3, 5\} \): \( \frac{2 + 3 + 5}{3} = 3.33 \)

- Mean of \( \{2, 3, 7\} \): \( \frac{2 + 3 + 7}{3} = 4.00 \)

- Mean of \( \{2, 5, 7\} \): \( \frac{2 + 5 + 7}{3} = 4.67 \)

- Mean of \( \{3, 5, 7\} \): \( \frac{3 + 5 + 7}{3} = 5.00 \)

### Step 3: Create the sampling probability distribution

Each sample has an equal probability of being chosen. Since there are 4 samples, the probability for each sample is \( \frac{1}{4} \).

| Sample | Sample Mean | Probability |

|--------------|-------------|-------------|

| \{2, 3, 5\} | 3.33 | 0.25 |

| \{2, 3, 7\} | 4.00 | 0.25 |

| \{2, 5, 7\} | 4.67 | 0.25 |

| \{3, 5, 7\} | 5.00 | 0.25 |

### Step 4: Find the mean of the sampling distribution

The mean of the sampling distribution (\( \mu_{\bar{X}} \)) is the expected value of the sample means:

\[ \mu_{\bar{X}} = \sum (\text{Sample Mean} \times \text{Probability}) \]

\[ \mu_{\bar{X}} = (3.33 \times 0.25) + (4.00 \times 0.25) + (4.67 \times 0.25) + (5.00 \times 0.25) \]

\[ \mu_{\bar{X}} = 0.8325 + 1.00 + 1.1675 + 1.25 \]

\[ \mu_{\bar{X}} = 4.25 \]

### Step 5: Find the variance of the sampling distribution

The variance of the sampling distribution (\( \sigma^2_{\bar{X}} \)) is given by:

\[ \sigma^2_{\bar{X}} = \sum ((\text{Sample Mean} - \mu_{\bar{X}})^2 \times \text{Probability}) \]

\[ \sigma^2_{\bar{X}} = ( (3.33 - 4.25)^2 \times 0.25 ) + ( (4.00 - 4.25)^2 \times 0.25 ) + ( (4.67 - 4.25)^2 \times 0.25 ) + ( (5.00 - 4.25)^2 \times 0.25 ) \]

\[ \sigma^2_{\bar{X}} = ( ( -0.92 )^2 \times 0.25 ) + ( ( -0.25 )^2 \times 0.25 ) + ( ( 0.42 )^2 \times 0.25 ) + ( ( 0.75 )^2 \times 0.25 ) \]

\[ \sigma^2_{\bar{X}} = ( 0.8464 \times 0.25 ) + ( 0.0625 \times 0.25 ) + ( 0.1764 \times 0.25 ) + ( 0.5625 \times 0.25 ) \]

\[ \sigma^2_{\bar{X}} = 0.2116 + 0.015625 + 0.0441 + 0.140625 \]

\[ \sigma^2_{\bar{X}} = 0.412 \]

### Step 6: Find the standard deviation of the sampling distribution

The standard deviation (\( \sigma_{\bar{X}} \)) is the square root of the variance:

\[ \sigma_{\bar{X}} = \sqrt{\sigma^2_{\bar{X}}} \]

\[ \sigma_{\bar{X}} = \sqrt{0.412} \]

\[ \sigma_{\bar{X}} \approx 0.64 \]

### Summary

- Mean of the sampling distribution: \( \mu_{\bar{X}} = 4.25 \)

- Variance of the sampling distribution: \( \sigma^2_{\bar{X}} = 0.412 \)

- Standard deviation of the sampling distribution: \( \sigma_{\bar{X}} \approx 0.64