Answered

Sumali sa IDNStudy.com para sa detalyadong mga sagot sa iyong mga tanong. Magtanong ng anumang bagay at makatanggap ng agarang tugon mula sa aming dedikadong komunidad ng mga eksperto.

Directions: Find the exact values of the following expressions:
2. [tex] \: \frac{5 { \sin}^{2} {30}^{ \circ} + { \cos}^{2}{45}^{ \circ} + 4 { \tan}^{2} {60}^{ \circ} }{2 \sin {30}^{ \circ} \cos {45}^{ \circ} + \tan {45}^{ \circ} } [/tex]​

Sagot :

[tex]\underline{\underline{\large{\red{\mathcal{✒GIVEN:}}}}}[/tex]

[tex]\bullet \: \: \rm{ \frac{5 { \sin}^{2} {30}^{ \circ} + { \cos}^{2}{45}^{ \circ} + 4 { \tan}^{2} {60}^{ \circ} }{2 \sin {30}^{ \circ} \cos {45}^{ \circ} + \tan {45}^{ \circ} }}[/tex]

[tex]\underline{\underline{\large{\red{\mathcal{REQUIRED:}}}}}[/tex]

Find the exact value.

[tex]\underline{\underline{\large{\red{\mathcal{SOLUTION:}}}}}[/tex]

Remember the six trigonometric ratios for [tex]\tt{\purple{special \: angles}}[/tex] [tex]\tt{{45}^{ \circ} , {30}^{ \circ} \: and \: {60}^{ \circ}}[/tex]:

[tex]\small{\boxed{ \bm{{ \red{ \sin {30}^{ \circ} = \dfrac{1}{2} }}}}}[/tex]

[tex]\small{\boxed{ \bm{{ \red{ \cos {45}^{ \circ} = \dfrac{ \sqrt{2} }{2} }}}}}[/tex]

[tex]\small{\boxed{ \bm{{ \red{ \tan {60}^{ \circ} = \sqrt{3} }}}}}[/tex]

[tex]\small{\boxed{ \bm{{ \red{ \tan {45}^{ \circ} = \sqrt{1} }}}}}[/tex]

Now, we substitute those values:

[tex]\small{\tt{ \frac{5( \frac{1}{2} {)}^{2} + ( \frac{ \sqrt{2} }{2} {)}^{2} + 4( \sqrt{3} {)}^{2} }{2 (\frac{1}{2}) ( \frac{ \sqrt{2} }{2} ) + 1} = \frac{ \frac{5}{4} + \frac{2}{4} + 12 }{ \frac{ \sqrt{2} }{2} + 1} }}[/tex]

[tex]\tt{ \frac{ \frac{7}{4} + 12}{ \frac{ \sqrt{2} + 2}{2} } = \frac{ \frac{7 + 48}{4} }{ \frac{ \sqrt{2} + 2}{2} } \div \frac{ \sqrt{2} + 2}{2} }[/tex]

[tex]\tt{ \dfrac{55(2)}{4( \sqrt{2} + 2)}}[/tex]

Simplify:

[tex]\large{\tt{\purple{ \dfrac{55}{2 \sqrt{2} + 4} }}}[/tex]

Final Answer:

[tex]\tt{\therefore}[/tex] The exact value is [tex]\large{\rm{\purple{ \dfrac{55}{2 \sqrt{2} + 4} }}}[/tex].