Sumali sa IDNStudy.com at makakuha ng mabilis at maaasahang mga sagot. Makakuha ng impormasyon mula sa aming mga eksperto, na nagbibigay ng maaasahang sagot sa lahat ng iyong mga tanong.
Sagot :
[tex]\underline{\underline{\large{\red{\mathcal{✒GIVEN:}}}}}[/tex]
[tex]\bullet \: \: \rm{\lim_{{x \to \infty}} \dfrac{{x^2 + 3x + 2}}{{2x^2 + 5x + 3}}}[/tex]
[tex]\underline{\underline{\large{\red{\mathcal{REQUIRED:}}}}}[/tex]
Solve the equation the limit using L'Hospital's rule.
[tex]\underline{\underline{\large{\red{\mathcal{SOLUTION:}}}}}[/tex]
Hi, Brainly User! Let me help you finding the limit ^^
1) Solve the limit below using [tex]\tt{ \purple{L'Hopital's \: rule}}[/tex]:
[tex]\tt{\lim_{{x \to \infty}} \dfrac{{x^2 + 3x + 2}}{{2x^2 + 5x + 3}}}[/tex]
2) We can use L'Hopital's rule if, when evaluated, the limit is of the form 0/0, of +/- inf/inf:
[tex]\tt{Which \: states \: that:}[/tex]
[tex]\small{\boxed{ \bm{{ \red{\lim_{{x \to \infty}} \dfrac{{f(x)}}{{g(x)}} = \lim_{{x \to \infty}} \dfrac{{f'(x)}}{{g'(x)}}}}}}}[/tex]
Therefore, we have:
[tex]\tt{\implies \lim_{{x \to \infty}} \frac{{ {x}^{2} + 3x + 2}}{{ {2x}^{2} + 5x + 3}} = \lim_{{x \to \infty}} \frac{{2x + 3}}{{4x + 5}} }[/tex]
3) Once again, when evaluated, the limit has the form inf/inf; thus, we can use L'Hopital's rule a second time:
[tex]\tt{\implies \lim_{{x \to \infty}} \frac{{ {x}^{2} + 3x + 2}}{{ {2x}^{2} + 5x + 3}} = \lim_{{x \to \infty}} \frac{2}{4} =\large {\purple{ \frac{1}{2}}} }[/tex]
Final Answer:
Hence, the limit is equal to [tex]\rm{\purple{\dfrac{1}{2}}}[/tex].
Answer:
It seems there was an error in running the code using L'Hopital's rule for the given limit. Let's manually solve the limit using L'Hopital's rule step by step.
- Click the image
Step-by-step explanation:
Sana makatulong. Pa follow then pa brainliest answer po! Tysm, God bless ❤️
# Carry on learning ✨
Natutuwa kami na ikaw ay bahagi ng aming komunidad. Magpatuloy sa pagtatanong at pagbibigay ng mga sagot. Sama-sama tayong lumikha ng isang komunidad ng karunungan. Para sa mabilis at maasahang mga sagot, bisitahin ang IDNStudy.com. Nandito kami upang tumulong sa iyo.