Sumali sa IDNStudy.com at makakuha ng mabilis at maaasahang mga sagot. Makakuha ng impormasyon mula sa aming mga eksperto, na nagbibigay ng maaasahang sagot sa lahat ng iyong mga tanong.

[tex]\lim_{{x \to \infty}} \frac{{x^2 + 3x + 2}}{{2x^2 + 5x + 3}}[/tex]
Solve it using L'Hopital's rule!​

Sagot :

[tex]\underline{\underline{\large{\red{\mathcal{✒GIVEN:}}}}}[/tex]

[tex]\bullet \: \: \rm{\lim_{{x \to \infty}} \dfrac{{x^2 + 3x + 2}}{{2x^2 + 5x + 3}}}[/tex]

[tex]\underline{\underline{\large{\red{\mathcal{REQUIRED:}}}}}[/tex]

Solve the equation the limit using L'Hospital's rule.

[tex]\underline{\underline{\large{\red{\mathcal{SOLUTION:}}}}}[/tex]

Hi, Brainly User! Let me help you finding the limit ^^

1) Solve the limit below using [tex]\tt{ \purple{L'Hopital's \: rule}}[/tex]:

[tex]\tt{\lim_{{x \to \infty}} \dfrac{{x^2 + 3x + 2}}{{2x^2 + 5x + 3}}}[/tex]

2) We can use L'Hopital's rule if, when evaluated, the limit is of the form 0/0, of +/- inf/inf:

[tex]\tt{Which \: states \: that:}[/tex]

[tex]\small{\boxed{ \bm{{ \red{\lim_{{x \to \infty}} \dfrac{{f(x)}}{{g(x)}} = \lim_{{x \to \infty}} \dfrac{{f'(x)}}{{g'(x)}}}}}}}[/tex]

Therefore, we have:

[tex]\tt{\implies \lim_{{x \to \infty}} \frac{{ {x}^{2} + 3x + 2}}{{ {2x}^{2} + 5x + 3}} = \lim_{{x \to \infty}} \frac{{2x + 3}}{{4x + 5}} }[/tex]

3) Once again, when evaluated, the limit has the form inf/inf; thus, we can use L'Hopital's rule a second time:

[tex]\tt{\implies \lim_{{x \to \infty}} \frac{{ {x}^{2} + 3x + 2}}{{ {2x}^{2} + 5x + 3}} = \lim_{{x \to \infty}} \frac{2}{4} =\large {\purple{ \frac{1}{2}}} }[/tex]

Final Answer:

Hence, the limit is equal to [tex]\rm{\purple{\dfrac{1}{2}}}[/tex].

Answer:

It seems there was an error in running the code using L'Hopital's rule for the given limit. Let's manually solve the limit using L'Hopital's rule step by step.

  • Click the image

Step-by-step explanation:

Sana makatulong. Pa follow then pa brainliest answer po! Tysm, God bless ❤️

# Carry on learning ✨

View image Johnreystarosa46