Makakuha ng mga sagot sa iyong mga tanong mula sa komunidad ng IDNStudy.com. Magtanong ng anumang bagay at makatanggap ng agarang tugon mula sa aming dedikadong komunidad ng mga eksperto.
Answer:
To determine the highest integer among seven consecutive odd integers whose sum is 441, we first define the sequence. Let the middle integer of the sequence be ( x ). Since we are dealing with seven consecutive odd integers, the sequence can be written as:
[x-6, x-4, x-2, x, x+2, x+4, x+6]
Next, we sum these integers:
[(x-6) + (x-4) + (x-2) + x + (x+2) + (x+4) + (x+6)]
Combining the terms, we get:
[(x-6) + (x-4) + (x-2) + x + (x+2) + (x+4) + (x+6) = 7x]
Given that the sum is 441, we set up the equation:
[7x = 441]
Solving for \( x \):
[x = \frac{441}{7} = 63]
Now, since \( x \) is the middle integer in the sequence, the highest integer is:
[x + 6 = 63 + 6 = 69]
Therefore, the highest integer is D. 69