Suriin ang IDNStudy.com para sa mabilis at maaasahang mga solusyon. Magtanong ng anumang bagay at makatanggap ng mga maalam na sagot mula sa aming komunidad ng mga propesyonal.
Sagot :
[tex]\underline{\underline{\large{\red{\mathcal{✒GIVEN:}}}}}[/tex]
A curve has an equation
[tex]\bullet \: \: \rm{x^{3}−4xy+y3=0}[/tex]
[tex]\underline{\underline{\large{\red{\mathcal{REQUIRED:}}}}}[/tex]
The equation of the tangent to the curve at the point (0, -3)
[tex]\underline{\underline{\large{\red{\mathcal{SOLUTION:}}}}}[/tex]
Hi, Brainly User!
If you are having difficulties in Math especially in calculus, let me help you!
1. To find the equation of the tangent to the curve at the point (0, -3) , we first need to find dy/dx using implicit differentiation:
[tex]\small{\tt{ {3x}^{2} - 4x \dfrac{d}{y} - 4y + 3 {y}^{2} \dfrac{dy}{dx} = 0}}[/tex]
[tex]\tt{(3 {y}^{2} - 4x) \dfrac{dy}{dx} = 4y - {3x}^{2} }[/tex]
[tex]\tt{ \dfrac{dy}{dx} = \dfrac{4y - {3x}^{2} }{3 {y}^{2} - 4x } }[/tex]
2. Now we evaluate [tex]\rm{\dfrac{dy}{dx}}[/tex] at the point (0, -3):
[tex]\tt{ \dfrac{dy}{dx} = \dfrac{4( - 3) - 3(0 {)}^{2} }{3( - 3 {)}^{2} - 4(0) } }[/tex]
[tex]\tt{ \dfrac{dy}{dx} = - \dfrac{12}{27} }[/tex]
[tex]\tt{ \dfrac{dy}{dx} = - \dfrac{4}{9} }[/tex]
3. The slope of the tangent at (0, -3) is -4/9.
The equation of the tangent line is given by:
[tex]\small{\boxed{ \bm{{ \red{y - y_{1} = m(x - x_{1}) }}}}}[/tex]
[tex]\tt{y - ( - 3) = - \dfrac{4}{9} (x - 0)}[/tex]
[tex]\tt{y + 3 = - \dfrac{4}{9} x}[/tex]
[tex]\boxed{ \tt{ \purple{ \large{y = - \dfrac{4}{9} x - 3}}}}[/tex]
Final Answer:
Thus, the equation of the tangent line to the curve at the point (0,−3) is
[tex] \rm{ \purple{ \large{D. \: y = - \dfrac{4}{9} x - 3}}}[/tex].
Salamat sa iyong kontribusyon. Huwag kalimutang bumalik upang magtanong at matuto ng mga bagong bagay. Ang iyong kaalaman ay napakahalaga sa ating komunidad. Ang IDNStudy.com ay nangako na sasagutin ang lahat ng iyong mga tanong. Salamat at bisitahin kami palagi.