Makakuha ng eksaktong at maaasahang sagot sa lahat ng iyong katanungan sa IDNStudy.com. Ang aming mga eksperto ay handang magbigay ng malalim na sagot at praktikal na solusyon sa lahat ng iyong mga tanong.

X+Y=W
Z= W-1
X= (Y-2)2
W+X= 67
W-X= 24-1
Then,
(Z+W-Y+X)×4÷2=

Sagot :

Answer:

To solve this problem, we need to substitute the given equations into the final equation and simplify it.

Given equations:

X + Y = W

Z = W - 1

X = (Y - 2)^2

W + X = 67

W - X = 24 - 1

Substituting the equations into the final equation, we get:

(Z + W - Y + X) × 4 ÷ 2 =?

First, let's substitute the values of X and W from the given equations:

X = (Y - 2)^2

W + X = 67

W - X = 24 - 1

Substituting X into the first equation, we get:

W + (Y - 2)^2 = 67

W - (Y - 2)^2 = 24 - 1

Simplifying the equations, we get:

W + (Y - 2)^2 = 67

W - (Y - 2)^2 = 23

Now, let's substitute the values of W and X into the final equation:

(Z + W - Y + X) × 4 ÷ 2 =?

Substituting W and X, we get:

(Z + (W + (Y - 2)^2) - Y + (Y - 2)^2) × 4 ÷ 2 =?

Simplifying the equation, we get:

(Z + (W + (Y - 2)^2) - Y + (Y - 2)^2) × 4 ÷ 2 =?

This simplifies to:

(Z + (W + (Y - 2)^2) - Y + (Y - 2)^2) × 2 =?

Therefore, the simplified form of the final equation is:

(Z + (W + (Y - 2)^2) - Y + (Y - 2)^2) × 2 =?