Magtanong at makakuha ng maaasahang mga sagot sa IDNStudy.com. Ang aming komunidad ay handang magbigay ng malalim at maaasahang mga sagot, anuman ang kahirapan ng iyong mga katanungan.

How do you solve this trigonometry problem?
DEF is a triangle in which DE=DF=17cm and EF=16cm. Find the lengths of the heights DM and EN where DM and EN are perpendicular to EF and DF respectively.

Sagot :

hint: draw the triangle first
DM=sq.root of (17cm^2 - 8cm^2)                        pythagorean theorem
note: 8cm comes from half of 16 which is EF
        ^2 means to the power of 2

EN:
let DN=x
    NF=17-x
solving for EN you got 2 equations:
EN=sq.root of(17cm^2 - x^2)
&
EN=sq.root of(16cm^2 - {17cm-x}^2)

equate 2 EN and you get:
sq.root of(17^2-x^2)=sq.root of(16^2-{17-x}^2)
17^2-x^2={16^2}-{17-x}^2                                  both sides are squared
289 - x^2 = 256 - 289 +34x - x^2
34x = 322
x = 161/17

therefore EN = 17^2 - x^2
                   = 289 - (161/17)^2
                   =240/17

First, to analyze this..you should illustrate the problem..

solve first for DM
since DE and DF is equal then DM must me cutting EF into two equal parts, EM=EF=8
since it would be a right triangle then we can use the Pythagorean theorem in whinc hyp^2=a^2+b^2
threfore substituting, 17^2=8^2+(EM)^2
EM=15

i"m sorry i have no idea on finding EN..that was all i know