Wawa94idn
Answered

Sumali sa IDNStudy.com at tuklasin ang komunidad ng pagbabahagi ng kaalaman. Ang aming platform ay nagbibigay ng mga maaasahang sagot upang matulungan kang gumawa ng matalinong desisyon nang mabilis at madali.

State whether the roots of each equation are real and unequal, real, and equal or imaginary and
unequal. (10 points)
1. 5x²-3x + 4 = 0
2. 4x² +2(x+4) = 0
3.6x² + 11x + 7 = 0
4. 2x² + 5x + 4 = 0 5. 25x² = 4x - 8

Sagot :

Answer:

[tex]\tt {1.\:}[/tex] Unequal and imaginary

[tex]\tt {2.\:}[/tex] Unequal and imaginary

[tex]\tt {3.\:}[/tex] Unequal and imaginary

[tex]\tt {4.\:}[/tex] Unequal and imaginary

[tex]\tt {5.\:}[/tex] Unequal and imaginary

Solution:

We need to solve the following using the discriminant: [tex]\tt\underline {b^{2} -4ac }[/tex]. In order to find the nature of their roots.

[tex]\tt {1.\:\:5^2-3x+4=0}[/tex]

  • [tex]\tt {b^{2} -4ac = (-3)^2 -4(5)(4)}[/tex]
  • [tex]\tt {b^{2} -4ac = 9 -80}[/tex]
  • [tex]\tt {b^{2} -4ac = -71}[/tex]

Since [tex]\tt {-71 < 0}[/tex], the nature of roots is Unequal and imaginary.

[tex]\tt {2.\:\:\:4x^2+2x+8=0\:(4^2+2(x+4)=0)}[/tex]

  • [tex]\tt {b^{2} -4ac = 2^2 -4(4)(8)}[/tex]
  • [tex]\tt {b^{2} -4ac = 4 -128}[/tex]
  • [tex]\tt {b^{2} -4ac = -124}[/tex]

Since [tex]\tt {-124 < 0}[/tex], the nature of roots is Unequal and imaginary.

‎

[tex]\tt {3.\:\:\:6x^2+11x+7=0}[/tex]

  • [tex]\tt {b^{2} -4ac = 11^2 -4(6)(7)}[/tex]
  • [tex]\tt {b^{2} -4ac = 121 -168}[/tex]
  • [tex]\tt {b^{2} -4ac = -47}[/tex]

Since [tex]\tt {-47 < 0}[/tex], the nature of roots is Unequal and imaginary.

[tex]\tt {4.\:\:\:2x^2+5x+4=0}[/tex]

  • [tex]\tt {b^{2} -4ac = 5^2 -4(2)(4)}[/tex]
  • [tex]\tt {b^{2} -4ac = 25 -32}[/tex]
  • [tex]\tt {b^{2} -4ac = -7}[/tex]

Since [tex]\tt {-7 < 0}[/tex], the nature of roots is Unequal and imaginary.

[tex]\tt {5.\:\:\:25x^2-4x+8=0}[/tex]

  • [tex]\tt {b^{2} -4ac = (-4)^2 -4(25)(8)}[/tex]
  • [tex]\tt {b^{2} -4ac =16 -800}[/tex]
  • [tex]\tt {b^{2} -4ac = -784}[/tex]

Since [tex]\tt {-784 < 0}[/tex], the nature of roots is Unequal and imaginary.

Note:

  • If the discriminant is negative. The equation is unequal and imaginary.
  • If the discriminant is equal to 0. The equation is Real and Equal
  • If the discriminant is greater than 0. the equation is Real and unequal.