Sumali sa IDNStudy.com para sa detalyadong mga sagot sa iyong mga tanong. Hanapin ang mga solusyong kailangan mo nang mabilis at madali sa tulong ng aming mga eksperto.

Hey Brainiacs!

The integral [tex]\begin{gathered} \rm{{ \:\int \: \frac{ x + 2 }{( {x}^{2} + 3x + 3) \sqrt{x + 1}} \: dx} }\\ \end{gathered} [/tex] is equal to?​

Hey Brainiacs The Integral Texbegingathered Rm Int Frac X 2 X2 3x 3 Sqrtx 1 Dx Endgathered Tex Is Equal To class=

Sagot :

ANSWER:

[tex]\boxed{ \bold{ \: I = \frac{2}{ \sqrt{3} } {tan}^{ - 1} ( \frac{x }{ \sqrt{3 (x - 1} )} ) + c }}[/tex]

SOLUTION:

[tex]\tt \:\int \: \frac{ x + 2 }{( {x}^{2} + 3x + 3) \sqrt{x + 1}} \: dx \\ [/tex]

First, let's take I as [tex] \implies[/tex] [tex]\tt \:\int \: \frac{ x + 2 }{( {x}^{2} + 3x + 3) \sqrt{x + 1}} \: dx \\[/tex].

[tex]\tt \:I = \int \: \frac{ x + 2 }{( {x}^{2} + 3x + 3) \sqrt{x +1}} \: dx \\\tt \: I =\int \: \frac{ x + 2 }{( {x}^{2} + 2x + 1 + x + 2) \sqrt{x + 1}} \: dx \\ \tt \:I =\int \: \frac{ x + 2 }{( ({x + 1}^{2}) + x + 2) \sqrt{x + 1}}[/tex]

Let, x + 1 = m² [tex] \implies[/tex] dx = 2mdm.

[tex]\tt \:I =\int \: \frac{ {m}^{2} + 1}{ {m}^{4} + {m}^{2} + 1 \cdot \: m} 2mdm \\ \tt \:I =\int \: \frac{ {m}^{2} + 1}{ {m}^{4} + {m}^{2} + 1 \cdot \: \bcancel{ m}} 2 \bcancel{m}dm \\ \tt \: I = \: \int \: \frac{ {m}^{2} + 1}{ {m}^{4} + {m}^{2} + 1 } 2dm[/tex]

Now, divide the numerator & denominator by m²...we'll get it as...

[tex]\tt \:I =2\int \: \frac{ 1 + \frac{1}{ {m}^{2} } }{ {m}^{2} + 1 + \frac{1}{ {m}^{2} } } \: dm \\\tt \: I =2\int \: \frac{ 1 + \frac{1}{ {m}^{2} } }{( {m}^{2} + \frac{1}{ {m}^{2} } - 2) + 3} \: dm \\\tt \: I =2\int \: \frac{ (1 + \frac{1}{ {m}^{2} }) \: dm }{ ({m} - \frac{1}{ m } ) ^{2} + 3}[/tex]

Now, let m - 1/m be t [tex] \implies[/tex] (1 + 1/m²) dm = dt

[tex]\tt \:I =2\int \: \frac{ dt}{ {t}^{2} + 3 } \\ \tt \:I = 2\int \: \frac{ dt}{ {t}^{2} + ( \sqrt{3}) ^{2} }[/tex]

We know, [tex]\tt \:\int \: \frac{dx}{ {x}^{2} + a ^{2} } = \frac{1}{a} tan ^{ - 1} (\frac{x}{a} ) + c[/tex] ...therefore...

[tex]\tt \:I = \frac{2}{ \sqrt{3} } {tan}^{ - 1} ( \frac{t}{ \sqrt{3} } ) + c \: \rightarrow \boxed{ \tt \: eq. \: 1} [/tex]

Now, substitute the value of 't' in eq. 1..we'll get..

[tex]\tt \:I = \frac{2}{ \sqrt{3} } {tan}^{ - 1} ( \frac{m - \frac{1}{m} }{ \sqrt{3} } ) + c \: \rightarrow \boxed{ \tt \: eq. \: 2}[/tex]

Now, substitute the value of 'm' in eq. 2...we'll get...

[tex]\tt \: I = \frac{2}{ \sqrt{3} } {tan}^{ - 1} ( \frac{ \sqrt{x + 1} - \frac{1}{ \sqrt{x - 1} } }{ \sqrt{3} } ) + c \\ \tt \:I = \frac{2}{ \sqrt{3} } {tan}^{ - 1} ( \frac{x + 1 - 1}{ \sqrt{3} \sqrt{x - 1} } ) + c \\ \boxed{\boxed{ \bold{ \: I = \frac{2}{ \sqrt{3} } {tan}^{ - 1} ( \frac{x }{ \sqrt{3 (x - 1} )} ) + c }}}[/tex]

The correct answer is option B.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬