Makahanap ng mga solusyon sa iyong mga problema gamit ang IDNStudy.com. Makakuha ng mga kumpletong sagot sa lahat ng iyong mga tanong mula sa aming network ng mga eksperto.

In radicals,what is the square root of 3 multiplied by the cube root of 18?

Sagot :

Step 1:  Convert the radicals to to fractional exponent:

[tex] \sqrt{3} = 3 ^{ \frac{1}{2} } [/tex]

[tex] \sqrt[3]{18} [/tex] = [tex] 18^{ \frac{1}{3} } [/tex]

Step 2:  Convert the fractional exponents to similar fractions:

LCD of 1/2 and 1/3 is 6

1/2 = 3/6   ⇒ [tex]3 \frac{1}{2} [/tex] = [tex]3 ^{ \frac{3}{6} } [/tex]

1/3 = 2/6   ⇒ [tex]18 ^{ \frac{1}{3} } [/tex]  = [tex]18 ^{ \frac{2}{6} } [/tex]

Step 3:  Convert to radicals:

[tex] 3^{ \frac{3}{6} } = \sqrt[6]{3 ^{3} } [/tex]

[tex]18 ^{ \frac{2}{6} } = \sqrt[6]{18 ^{2} } [/tex]

Step 4:  Multiply:

[tex]( \sqrt[6]{3 ^{3} } )( \sqrt[6]{18 ^{2} }) [/tex]

[tex]( \sqrt[6]{ 3^{3} })( \sqrt[6]{18 ^{2} } )= ( \sqrt[6]{ 3^{3} } )( \sqrt[6]{(3 ^{3})(12) } [/tex]

= [tex] \sqrt[6]{(3 ^{6})(12) } [/tex]

ANSWER = [tex] 3\sqrt[6]{12} [/tex]