IDNStudy.com, ang iyong platform ng sanggunian para sa malinaw na mga sagot. Ang aming komunidad ay nagbibigay ng eksaktong sagot upang matulungan kang maunawaan at malutas ang anumang problema.

How to find area of triangle using Heron's formula?

Please!!! :) anyone..

Sagot :


First, find it's perimeter then divide it by 2. 
s = (a + b + c) ÷ 2

Then to find the area:
A = √s(s-a)(s-b)(s-c)

That's Heron's formula for area of triangle


Heron's Formula for area of triangle given sides a, b, and c; and NOT base and height:

Area = [tex] \sqrt{s(s-a)(s-b)(s-c)} [/tex]

Where s is the semi-perimeter (half of the perimeter) of the triangle.

s = [tex] \frac{1}{2} [/tex] (a + b + c)

How to use Heron's formula?
Given the sides a, b, and c of a triangle, solve its semi-perimeter first, then find the area.

Example:
The triangle has sides 3 cm, 4 cm and 5  cm.

Semi-perimeter:
s = [tex] \frac{1}{2} [/tex](3 + 4 + 5)
s = ¹/₂ (12)
s = 6

Solve for area given s (6 cm) and sides a=2 cm; b=4cm;  c=5 cm

Area =  [tex] \sqrt{(6cm)(6cm-3 cm)(6cm-4cm)(6cm-5cm)} [/tex]

Area = [tex] \sqrt{(6cm)(3cm)(2cm)(1cm)} [/tex]

Area = [tex] \sqrt{36cm ^{4} } [/tex]

Area = 6 cm²

-----------------------------

In finding the radius of the circumscribing circle of a triangle, the formula in solving for radius is derived from Heron's formula.  You may check the problem I solved her in brainly at link:  brainly.ph/question/275941