Makahanap ng mga solusyon sa iyong mga problema gamit ang IDNStudy.com. Ang aming komunidad ay handang magbigay ng malalim at maaasahang mga sagot, anuman ang kahirapan ng iyong mga katanungan.
Sagot :
y = ax² + bx + c ⇒ y = f(x)
f(x) = ax² + bx + c
Given: x² - 12y + 5 = 0
Convert to y = ax² + bx + c
x² - 12y + 5 = 0
x² + 5 = 12y
12y = x² + 5
12y/12 = x²/12 + 5/12
y = [tex] \frac{ x^{2} }{12} + \frac{5}{12} [/tex]
A.) Set y to = 0
[tex] \frac{ x^{2} }{12} + \frac{5}{12} =0[/tex]
Solve for roots (zeroes) using the method extracting the square roots.
Use this method when b = 0 in equation ax² + bx + c = 0.
[tex]12( \frac{ x^{2} }{12} + \frac{5}{12} =0)[/tex]
x² + 5 = 0
x² = -5
[tex] \sqrt{ x^{2} } = \frac{+}{-} \sqrt{-5} [/tex]
x₁ = [tex]i \sqrt{5} [/tex]
x₂ = [tex]-i \sqrt{5} [/tex]
THE ZEROES (ROOTS) are [tex]i \sqrt{5} [/tex] and [tex]-i \sqrt{5} [/tex].
It means that the equation has no real roots, and the graph (parabola) that opens upward is above the x-axis.
B.) Find the vertex of the parabola.
Since the equation has a positive leading leading term ([tex] \frac{ x^{2} }{12} [/tex]), the parabola opens upward (u-shaped), and the vertex is the minimum.
Vertex = (h, k)
h = [tex] \frac{-b}{2a} [/tex]
h = [tex] \frac{0}{2( \frac{1}{12}) } [/tex]
h = 0
k = f(h)
Plug -in the value of h (0) to x in equation [tex] \frac{x ^{2} }{12} + \frac{5}{12} [/tex]
k = [tex] \frac{0 ^{2} }{12} + \frac{5}{12} [/tex]
k = 0 + ⁵/₁₂
k = ⁵/₁₂
Vertex = (h, k)
Vertex = (0, ⁵/₁₂)
FINAL ANSWER: The vertex is (0, ⁵/₁₂) and the zeroes (roots) are [tex]i \sqrt{5} [/tex] and [tex]-i \sqrt{5} [/tex].
Please click image to see the graph of the given equation.
f(x) = ax² + bx + c
Given: x² - 12y + 5 = 0
Convert to y = ax² + bx + c
x² - 12y + 5 = 0
x² + 5 = 12y
12y = x² + 5
12y/12 = x²/12 + 5/12
y = [tex] \frac{ x^{2} }{12} + \frac{5}{12} [/tex]
A.) Set y to = 0
[tex] \frac{ x^{2} }{12} + \frac{5}{12} =0[/tex]
Solve for roots (zeroes) using the method extracting the square roots.
Use this method when b = 0 in equation ax² + bx + c = 0.
[tex]12( \frac{ x^{2} }{12} + \frac{5}{12} =0)[/tex]
x² + 5 = 0
x² = -5
[tex] \sqrt{ x^{2} } = \frac{+}{-} \sqrt{-5} [/tex]
x₁ = [tex]i \sqrt{5} [/tex]
x₂ = [tex]-i \sqrt{5} [/tex]
THE ZEROES (ROOTS) are [tex]i \sqrt{5} [/tex] and [tex]-i \sqrt{5} [/tex].
It means that the equation has no real roots, and the graph (parabola) that opens upward is above the x-axis.
B.) Find the vertex of the parabola.
Since the equation has a positive leading leading term ([tex] \frac{ x^{2} }{12} [/tex]), the parabola opens upward (u-shaped), and the vertex is the minimum.
Vertex = (h, k)
h = [tex] \frac{-b}{2a} [/tex]
h = [tex] \frac{0}{2( \frac{1}{12}) } [/tex]
h = 0
k = f(h)
Plug -in the value of h (0) to x in equation [tex] \frac{x ^{2} }{12} + \frac{5}{12} [/tex]
k = [tex] \frac{0 ^{2} }{12} + \frac{5}{12} [/tex]
k = 0 + ⁵/₁₂
k = ⁵/₁₂
Vertex = (h, k)
Vertex = (0, ⁵/₁₂)
FINAL ANSWER: The vertex is (0, ⁵/₁₂) and the zeroes (roots) are [tex]i \sqrt{5} [/tex] and [tex]-i \sqrt{5} [/tex].
Please click image to see the graph of the given equation.
Ang iyong aktibong pakikilahok ay mahalaga sa amin. Magpatuloy sa pagtatanong at pagbahagi ng iyong nalalaman. Sama-sama tayong lumikha ng isang komunidad ng karunungan. Gawin mong pangunahing mapagkukunan ang IDNStudy.com para sa maasahang mga sagot. Nandito kami para sa iyo.