Makahanap ng mga solusyon sa iyong mga problema gamit ang IDNStudy.com. Ang aming komunidad ay handang magbigay ng malalim at maaasahang mga sagot, anuman ang kahirapan ng iyong mga katanungan.

find the vertex and zeroes of x^2-12y+5=0

Sagot :

y = ax² + bx + c    ⇒    y = f(x)
f(x) = ax² + bx + c

Given:  x² - 12y + 5 = 0
Convert to y = ax² + bx + c
        x² - 12y + 5 = 0
        x² + 5 = 12y     
       12y = x² + 5
       12y/12 = x²/12 + 5/12
        y = [tex] \frac{ x^{2} }{12} + \frac{5}{12} [/tex]

A.)  Set y to = 0
      [tex] \frac{ x^{2} }{12} + \frac{5}{12} =0[/tex]

      Solve for roots (zeroes) using the method extracting the square roots.
      Use this method when b = 0 in equation ax² + bx + c = 0.

      [tex]12( \frac{ x^{2} }{12} + \frac{5}{12} =0)[/tex]

      x² + 5 = 0

      x² = -5

      [tex] \sqrt{ x^{2} } = \frac{+}{-} \sqrt{-5} [/tex]

      x₁ = [tex]i \sqrt{5} [/tex]

      x₂ = [tex]-i \sqrt{5} [/tex]

THE ZEROES (ROOTS) are [tex]i \sqrt{5} [/tex]  and [tex]-i \sqrt{5} [/tex].

It means that the equation has no real roots, and the graph (parabola) that opens upward is above the x-axis.

B.)  Find the vertex of the parabola. 
       Since the equation has a positive leading leading term ([tex] \frac{ x^{2} }{12} [/tex]), the parabola opens upward (u-shaped), and the vertex is the minimum.

Vertex = (h, k)

h = [tex] \frac{-b}{2a} [/tex] 

h = [tex] \frac{0}{2( \frac{1}{12}) } [/tex]

h = 0

k = f(h)
Plug -in  the value of h (0) to x in equation [tex] \frac{x ^{2} }{12} + \frac{5}{12} [/tex]

k = [tex] \frac{0 ^{2} }{12} + \frac{5}{12} [/tex]

k = 0 + ⁵/₁₂

k = ⁵/₁₂

Vertex = (h, k)
Vertex = (0, ⁵/₁₂)
   
FINAL ANSWER:  The vertex is (0, ⁵/₁₂) and the zeroes (roots) are [tex]i \sqrt{5} [/tex] and [tex]-i \sqrt{5} [/tex].

Please click image to see the graph of the given equation.
View image Аноним