IDNStudy.com, kung saan ang mga eksperto at komunidad ay nagtutulungan para sagutin ang iyong mga tanong. Ang aming mga eksperto ay nagbibigay ng mabilis at eksaktong sagot upang tulungan kang maunawaan at malutas ang anumang problema.
Sagot :
This is an example of Combination.
Combination is the number of ways of selecting r items from a set of n.
Thus, the formula of Combination is
nCr = n!/r!(n-r)!
There are 8C5 ways that a student can answer 5 out of 8 questions.
Let's solve this.
8C5 = 8!/5!(8-5)!
= 8! / 5!(3!)
= (8×7×6×5!) / (5!×3×2×1)
= (8×7×6) / (3×2×1)
= 336 / 6
8C5 = 56 ways
Therefore, there are 56 ways that a student can answer 5 out of 8 questions.
Combination is the number of ways of selecting r items from a set of n.
Thus, the formula of Combination is
nCr = n!/r!(n-r)!
There are 8C5 ways that a student can answer 5 out of 8 questions.
Let's solve this.
8C5 = 8!/5!(8-5)!
= 8! / 5!(3!)
= (8×7×6×5!) / (5!×3×2×1)
= (8×7×6) / (3×2×1)
= 336 / 6
8C5 = 56 ways
Therefore, there are 56 ways that a student can answer 5 out of 8 questions.
This is a combination problem or simply where order doesn't matter
The formula is:
C=[tex]\frac{n!}{(n-r)!r!}[/tex]
where:
n=total number o objects
r=number of objects you need to answer
Substitute:
C=[tex]\frac{8!}{(8-5)!5!}[/tex]
C=[tex]\frac{8x7x6x5!}{3!5!}[/tex]
Cancel out the 6 and the 3! since they have the same value, and then cancel out 5! on both sides since they are the same, then you are left with:
C=8x7
C=56
Hope this helps =)
The formula is:
C=[tex]\frac{n!}{(n-r)!r!}[/tex]
where:
n=total number o objects
r=number of objects you need to answer
Substitute:
C=[tex]\frac{8!}{(8-5)!5!}[/tex]
C=[tex]\frac{8x7x6x5!}{3!5!}[/tex]
Cancel out the 6 and the 3! since they have the same value, and then cancel out 5! on both sides since they are the same, then you are left with:
C=8x7
C=56
Hope this helps =)
Ang iyong aktibong pakikilahok ay mahalaga sa amin. Magpatuloy sa pagtatanong at pagbibigay ng mga sagot. Sama-sama tayong lumikha ng isang masiglang komunidad ng pagkatuto. Sa IDNStudy.com, kami ay nangako na magbigay ng pinakamahusay na mga sagot. Salamat at sa muling pagkikita.