Makahanap ng mga eksaktong solusyon sa iyong mga problema gamit ang IDNStudy.com. Ang aming mga eksperto ay nagbibigay ng mabilis at eksaktong sagot upang tulungan kang maunawaan at malutas ang anumang problema.

pahelp po akwjhwjwwkhwbw​

Pahelp Po Akwjhwjwwkhwbw class=

Sagot :

Answer:

Given Parameters:

  • Distance (d) = 1.2 mm = 1.2 × 10-³ m
  • Side (a) = 6 cm = 6 × 10-² m
  • Charge (Q) = 300 μC = 300 × 10-⁶ C

To Find :

  • Energy stored between the two plates.

Solution:

[tex]\footnotesize\longrightarrow\: \sf E_{(Total \: Stored \: Energy)} = \dfrac{Q^2}{2C} \\ [/tex]

[tex]\footnotesize\longrightarrow \:\sf E_{(Total \: Stored \: Energy)} = \dfrac{Q^2}{2 \bigg \{ \frac{A\epsilon_0 }{d} \bigg \}} \qquad \: \bigg \lgroup \because \rm \: C = \dfrac{A \epsilon_0}{d} \bigg \rgroup\\ [/tex]

[tex]\footnotesize\longrightarrow \:\sf E_{(Total \: Stored \: Energy)} = \dfrac{Q^2d}{2A\epsilon_0}[/tex]

[tex]\footnotesize\longrightarrow \:\sf E_{(Total \: Stored \: Energy)} = \dfrac{(300 \times {10}^{ - 6})^{2} 1.2 \times 10^{ - 3} }{2 \times 6 \times {10}^{ - 2} \times 6 \times {10}^{ - 2} \times 8.85 \times {10}^{ - 12} }\qquad \: \bigg \lgroup \because \rm \: \epsilon_0 = 8.85 \times {10}^{ - 12} \: C^2/Nm^2 \bigg \rgroup[/tex]

[tex]\footnotesize\longrightarrow \:\sf E_{(Total \: Stored \: Energy)} = \dfrac{9 \times {10}^{4} \times {10}^{ - 12} \times 1.2 \times 10^{ - 3} }{2 \times 36\times {10}^{ - 4} \times 8.85 \times {10}^{ - 12}} \\ [/tex]

[tex]\footnotesize\longrightarrow \:\sf E_{(Total \: Stored \: Energy)} = \dfrac{108 \times {10}^{ - 1} \times {10}^{4} \times {10}^{ - 12} \times 10^{ - 3} }{72\times {10}^{ - 4} \times 8.85 \times {10}^{ - 12}} \\ [/tex]

[tex]\footnotesize\longrightarrow \:\sf E_{(Total \: Stored \: Energy)} = \dfrac{108 \times \cancel{{10}^{ - 12} } }{72\times {10}^{ - 4} \times 885 \times {10 }^{ - 2} \times \cancel{ {10}^{ - 12}}} \\[/tex]

[tex]\footnotesize\longrightarrow \:\sf E_{(Total \: Stored \: Energy)} = \dfrac{108 }{6372 \times 10^{1} \times {10}^{ - 6}}[/tex]

[tex]\footnotesize\longrightarrow \:\sf E_{(Total \: Stored \: Energy)} = \dfrac{108 }{6372 \times {10}^{ - 5}}[/tex]

[tex]\footnotesize\longrightarrow \:\sf E_{(Total \: Stored \: Energy)} = \dfrac{108 \times {10}^{5} }{6372 } \\ [/tex]

[tex]\footnotesize\longrightarrow \: \underline{\underline{\sf E_{(Total \: Stored \: Energy)} \approx0.016\times {10}^{5} \: J}}\\ [/tex]