IDNStudy.com, ang iyong mapagkukunan ng eksaktong at maaasahang mga sagot. Tuklasin ang malalim na sagot sa iyong mga tanong mula sa aming komunidad ng mga bihasang propesyonal.

find the equation of the circle having the endpoints of the diameter (4 ,6) and (0, -2)

Sagot :

Steps in deriving the equation of circle given the endpoints of its diameter:
Given: (4,6) and 0,-2)

1) Find the center (h, k)  using midpoint formula.
Midpoint = [tex]( \frac{x_{1}+x_{2} }{2}, \frac{y_{1}+y_{2} }{2} )[/tex]

x₁ = 4     x₂ = 0
y₁ = 6     y₂ = -2

Midpoint (Center) = [tex]( \frac{4+0}{2}, \frac{6+ (-2)}{2}) [/tex]
                             = (⁴/₂, ⁴/₂)
                             = (2, 2)

The center (h,k) is (2, 2).

2)  Find the distance of the radius by solving for the distance of the two endpoints of diameter divided by 2.  (Radius is 1/2 of diameter of the circle.)

Radius = [tex]( \sqrt{(x_{2}-x_{1} )^{2} + (y_{2} -y_{1} ) ^{2}) [/tex]/2

Radius = [tex]( \sqrt{(0-4) ^{2}+(-2-6) ^{2} })/2 [/tex]

Radius = [tex]( \sqrt{(4) ^{2}+(-8) ^{2} })/2 [/tex]

Radius = [tex](1/2) \sqrt{(16)(5)} [/tex]

Radius = (1/2)(4) [tex] \sqrt{5} [/tex]

Radius = [tex]2 \sqrt{5} [/tex]

3)  Equation:
Standard or Center-Radius Form:
(x - h)² + (y-h)² = r²

(x - 2)² + (y - 2)² = ([tex](2 \sqrt{5} ) ^{2} [/tex]

(x-2)² + (y-2)² = (4)(5)

(x-2)² + (y-2)² = 20

4.) Equation of the circle in general form, x² + y² + Cx + Dy + E = 0:
(x-2)² + (y-2)² = 20

x² - 4x + 4 + y² - 4y + 4 - 20 = 0

x² + y² - 4x - 4y - 16 = 0