Makakuha ng maaasahan at pangkomunidad na mga sagot sa IDNStudy.com. Sumali sa aming platform ng tanong at sagot upang makatanggap ng mabilis at eksaktong tugon mula sa mga propesyonal sa iba't ibang larangan.

what value of k will make the system -kx+y=3 and 4x-y=2 a consistent-independent?

Sagot :

Eliminate y:

- kx + y = 3  ⇒  Equation 1
  4x - y =  2  ⇒  Equation 2

-kx : 4x = 3 : 2

-kx (2) = 4x (3)   
-2xk = 12x         

-2xk/-2x = 12x/-2x

k = - 6 

Solve the system, substitute - 6 for k in Equation 1

-(-6)x + y = 3
6x + y = 3
y = -6x + 3  ⇒  Equation 3

Substitute for x by  - 6x + 3 for y in Equation 2:
4x - (-6x + 3) = 2
4x + 6x - 3 = 2
10x = 2 + 5
10x/10 = 5/10
x = 1/2

Solve for y, by substituting 1/2 to x in Equation 3:
y = -6x + 3
y = -6(1/2) + 3
y = - 3 + 3
y = 0

The solution to the system is (1/2, 0).

To check, x = 1/2;   y = 0
Equation 1:  
6x + y = 3
6 (1/2) + 0 = 3
3 + 0 = 3
3 = 3

Equation 2:
4x - y = 2
4 (1/2) - 0 = 2
2 - 0 = 2
2 = 2

Therefore - 6 for k satisfies the system as consistent and independent with only one solution (1/2, 0) which is the point of intersection of the given two equations/graphs.