IDNStudy.com, kung saan ang iyong mga tanong ay natutugunan ng eksaktong sagot. Ang aming platform ng tanong at sagot ay idinisenyo upang magbigay ng mabilis at eksaktong sagot sa lahat ng iyong mga tanong.
Sagot :
Sum of series in Arithmetic Sequence:
[tex]S_{n} = \frac{n}{2} (a _{1} + a _{n}) [/tex]
Where:
[tex]S _{n} [/tex] = is the sum of the series
n = term in a series ⇒ ?
[tex]a _{1} [/tex] = is the first term, 2
[tex]a _{n} [/tex] = is the last term, 28
Arithmetic series = {x/x is an even number<30}
Arithmetic sequence: {2, 4,...,28}
Even number, multiple of 2: the common difference (d) is 2
1) First, find the number of terms in the series
[tex]a _{n} = a _{1} + (n-1)(d)[/tex]
28 = 2 + (n-1)(2)
28 = 2 + 2n - 2
28 = 2n
28/2 = 2n/2
n = 14
The number of terms from 2 to 28 is 14.
2) Solve for the sum of the series:
[tex]S _{n} = \frac{14}{2} (2 + 28) [/tex]
[tex]S _{n}= 7 (30) [/tex]
[tex]S _{n} [/tex] = 210
The sum of the even numbers from 2 to 28 is 210.
[tex]S_{n} = \frac{n}{2} (a _{1} + a _{n}) [/tex]
Where:
[tex]S _{n} [/tex] = is the sum of the series
n = term in a series ⇒ ?
[tex]a _{1} [/tex] = is the first term, 2
[tex]a _{n} [/tex] = is the last term, 28
Arithmetic series = {x/x is an even number<30}
Arithmetic sequence: {2, 4,...,28}
Even number, multiple of 2: the common difference (d) is 2
1) First, find the number of terms in the series
[tex]a _{n} = a _{1} + (n-1)(d)[/tex]
28 = 2 + (n-1)(2)
28 = 2 + 2n - 2
28 = 2n
28/2 = 2n/2
n = 14
The number of terms from 2 to 28 is 14.
2) Solve for the sum of the series:
[tex]S _{n} = \frac{14}{2} (2 + 28) [/tex]
[tex]S _{n}= 7 (30) [/tex]
[tex]S _{n} [/tex] = 210
The sum of the even numbers from 2 to 28 is 210.
Salamat sa iyong kontribusyon. Huwag kalimutang bumalik at magtanong ng mga bagong bagay. Sama-sama tayong lumikha ng isang mas matibay na samahan. IDNStudy.com ang iyong mapagkakatiwalaang kasama para sa lahat ng iyong mga katanungan. Bisitahin kami palagi.