Suriin ang malawak na saklaw ng mga paksa at makakuha ng mga sagot sa IDNStudy.com. Alamin ang mga maaasahang sagot sa iyong mga tanong mula sa aming malawak na kaalaman sa mga eksperto.

The sum of two positive numbers is 5 and the sum of their cubes is 35. What is the sum of their squares?

Sagot :

The two numbers: x and y
x + y = 5     ⇒    y = 5 - x

Representation:
x = first number
5 - x = second number

Sum of their cubes:
(x)³ + (5-x)³ = 35
x³ + 125 - 75x + 15x² - x³ = 35
x³ - x² + 15x² - 75x + 125 = 35
15x² - 75x + 125 = 35

Transform to Quadratic Equation form, ax² + bx + c = 0
15x²  - 75x + 125 - 35 = 0
15x² - 75x + 90 = 0

Factor out the GCF of each term: 15
15 ( x² - 5x + 6) = 0

Factor x² - 5x + 6:
(x - 2) (x - 3) = 0

x - 2 = 0
x = 2

x - 3 = 0
x = 3

The two positive numbers are 2 and 3

The sum of their squares:
Sum of their squares = (2)² + (3)² 
Sum of their squares = 4 + 9
Sum of their squares = 13

The sum of the squares of the 2 and 3 is 13.

To check:
Sum of the two positive numbers 2 and 3 is 5
2 + 3 = 5

Sum of the cubes of the two positive numbers 2 and 3 is 35.
(2)³ + (3)³ = 35
(2)(2)(2) + (3)(3)(3) = 35
8 + 27 = 35
35 = 35