IDNStudy.com, ang iyong destinasyon para sa mabilis at kaugnay na mga sagot. Hanapin ang mga solusyong kailangan mo nang mabilis at madali sa tulong ng aming mga eksperto.

what is the equation of the circle with diameter whose endpoints are (3,1) and (5.5)

Sagot :

✏️CIRCLE EQUATION

[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]

[tex]\underline{\mathbb{QUESTION:}}[/tex]

  • What is the equation of the circle with diameter whose endpoints are (3,1) and (5,5)?

[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]

[tex]\underline{\mathbb{ANSWER:}}[/tex]

[tex]\quad\Large\rm»\:\: \green{(x-4)^2+(y-3)^2=5}[/tex]

[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]

[tex]\underline{\mathbb{SOLUTION:}}[/tex]

- The equation of the circle in standard form is written as:

  • [tex](x-h)^2+(y-k)²=r^2[/tex]

- Where (h,k) is the center and r is the radius.

[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]

- Find the midpoint between the endpoints because that would be the center of the circle.

[tex] \begin{aligned}& \bold{ \color{lightblue}Formula:} \\& \boxed{M = \bigg(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\bigg)}\end{aligned}[/tex]

  • [tex] \begin{aligned}{Center = \bigg(\frac{3 + 5}{2},\frac{1 + 5}{2}\bigg)}\end{aligned}[/tex]

  • [tex] \begin{aligned}{Center = \bigg(\frac{8}{2},\frac{6}{2}\bigg)}\end{aligned}[/tex]

  • [tex]Center = (4, 3)[/tex]

- The center is at (4,3). Substitute in the standard form of the equation.

  • [tex](x - 4)^{2} + (y - 3)^{2} = {r}^{2} [/tex]

- Find the square of the radius if it passes through one of the given endpoints of the diameter: (5,5)

  • [tex](5 - 4)^{2} + (5 - 3)^{2} = {r}^{2} [/tex]

  • [tex](1)^{2} + (2)^{2} = {r}^{2} [/tex]

  • [tex]1 + 4 = {r}^{2} [/tex]

  • [tex]5 = {r}^{2} [/tex]

- Thus, the radius² is 5. Substitute the square of the radius to the equation.

  • [tex](x - 4)^{2} + (y - 3)^{2} = 5[/tex]

[tex]\therefore[/tex] (x - 4)² + (y - 3)² = 5 is the standard form of the equation.

[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]

#CarryOnLearning