IDNStudy.com, kung saan nagtatagpo ang mga eksperto para sagutin ang iyong mga tanong. Sumali sa aming platform ng tanong at sagot upang makatanggap ng mabilis at eksaktong tugon mula sa mga propesyonal sa iba't ibang larangan.

The sum of two numbers is 19. The sum of twice the smaller number and thrice the larger number is 48. What are the two numbers?

Sagot :

Let x be the smaller number and be the larger number. Then,
x + y = 19
2x + 3y = 48

First equation can be transformed as x = 19 - y.

Substituting this value to the second equation, we have
2(19 - y) + 3y = 48
38 - 2y + 3y = 48
38 + y = 48
y = 48 - 38
y = 10

Substituting the value of y to either of the two equations, we have
x + y = 19
x + 10 = 19
x = 19 - 10
x = 9

The two numbers are 9 and 10.

- D.E.


Let x be the first number. It is the smaller number.
Let y be the second number. It is the larger number.

x + y = 19
2x + 3y = 48

Using Gaussian Elimination Method:
[tex] \left[\begin{array}{ccc}1&1&19\\2&3&48\\\end{array}\right] R1(2) - R2 = R2 \left[\begin{array}{ccc}1&1&19\\0&-1&-10\\\end{array}\right] R2(-1) \left[\begin{array}{ccc}1&1&19\\0&1&10\\\end{array}\right] \\ R1 - R2 = R1 \left[\begin{array}{ccc}1&0&9\\0&1&10\\\end{array}\right] [/tex]

So therefore, the numbers are 9 and 10.

Check:
9 + 10 = 19
2(9) + 3(10) = 48
18 + 30 = 48
48 = 48