IDNStudy.com, ang iyong destinasyon para sa mabilis at kaugnay na mga sagot. Alamin ang mga detalyadong sagot sa iyong mga tanong mula sa aming malawak na kaalaman sa mga eksperto.

find the roots by completing the square then check:
1.m^2+7m-51/4=0
2.w^2+6w-11=0

Sagot :

[tex]m^2+7m- \frac{51}{4}=0 [/tex]
[tex]m^2+7m= \frac{51}{4} [/tex]
[tex]m^2+7m+( \frac{7}{2})^2= \frac{51}{4}+ ( \frac{7}{2} )^2[/tex]
[tex]\sqrt{(m+ \frac{7}{2})^2 }= +or-\sqrt{ \frac{100}{4} }[/tex]
[tex]m+ \frac{7}{2}= +or- \frac{10}{2} [/tex]
[tex]m= \frac{10}{2}- \frac{7}{2} [/tex]
[tex]m= \frac{3}{2} [/tex]
[tex]m=- \frac{10}{2}- \frac{7}{2} [/tex]
[tex]m=- \frac{17}{2} [/tex]

Check:
[tex]m= \frac{3}{2} [/tex]
[tex]( \frac{3}{2})^2+7( \frac{3}{2})- \frac{51}{4}=0 [/tex]
[tex] \frac{9}{4}+ \frac{21}{2}- \frac{51}{4} =0[/tex]
[tex] \frac{51}{4} - \frac{51}{4}=0 [/tex]
[tex]0=0[/tex]

[tex]m= -\frac{17}{2} [/tex]
[tex]( -\frac{17}{2})^2+7( -\frac{17}{2})- \frac{51}{4}=0 [/tex]
[tex] \frac{289}{4}- \frac{119}{2}- \frac{51}{4}=0 [/tex]
[tex] \frac{51}{4}- \frac{51}{4} =0[/tex]
[tex]0=0[/tex]

[tex]w^2+6w-11=0[/tex]
[tex]w^2+6w=11[/tex]
[tex]w^2+6w+(3)^2=11+(3)^2[/tex]
[tex] \sqrt{(w+3)^2}= \sqrt{20} [/tex]
[tex]w+3=+or- \sqrt{20} [/tex]
[tex]w=+or- \sqrt{20}-3 [/tex]
[tex] \left \{ {{w= \sqrt{20}-3 } \atop {w= -\sqrt{20}-3 }} \right. [/tex]

(In checking you can just use a scientific calculator... Just substitute the variables with the given value...) ^_^ \/